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Solving Ordinary Differential Equations 
(ODEs):  Runge-Kutta methods

• We will consider differential equations of the general 
form:

• The methods we will discuss have the general form:

        new value = old value + slope*step size
 or

where φ is called the increment function, and is used 
to extrapolate from an old value yi to a new value yi+1.
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Euler’s Method

, which estimates the 
slope of f at ti,
and use it as the 
increment function: 

The simplest way of estimating the increment is to take the 
derivative at ti
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The numerical solution of ODEs involves two types of 
errors:
– Truncation errors, caused by the nature of the techniques 

employed
– Roundoff errors, caused by the limited number of significant 

digits that can be retained
The total, or global truncation error can be further split 

into:
– local truncation error that results from the applied method 

over a single step, and 
– propagated truncation error that results from the 

approximations produced during previous steps.

Error Analysis for Euler’s Method
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Let’s explore the error using an example:

Integrate from t = 0 to 4 with a step size of 1 and 
initial condition y(0) = 2.

We’ll use the function “eulode.m” and compare 
against the analytical solution

Error Analysis for Euler’s Method
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Matlab elements to use with “eulode.m”:

Function handle: used to pass the handle to a function as 
an argument; syntax: @myfun

When you have created a function “myfun.m” that evaluates 
the rhs of our example equation you can pass it to 
“eulode.m” as follows: 
>> [t,y] = eulode(@myfun,…)

The functions “nargin” and “nargout” allow you to test with 
how many input and output arguments a function was 
called.

“varargin” allows you to specify a function with a variable 
list of input parameters; example:
  function y = myfun(varargin)
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Let’s look at “eulode.m” first.

Then “example.m”, “comparison.m” and “solution.m”.

Note that we could have used anonymous functions 
instead of separate scripts for the “example” and “solution”.

Syntax:
>> myfun = @(x) sin(x)+2*cos(x);
>> plot([0:0.1:4],myfun([0:0.1:4]))

Look at “comparison_selfcontained.m”
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     t           y_Euler   y_true   relative error (%)
    0             2.0000    2.0000      0
    1.0000    5.0000    6.1946    19.2849
    2.0000   11.4022   14.8439   23.1863
    3.0000   25.5132   33.6772   24.2418
    4.0000   56.8493   75.3390   24.5420

Output from script “comparison.m”

The error can be reduced in two ways:
- smaller time steps
- modification of the scheme (a fundamental source of 
error is that the Euler scheme uses the slope at the 
beginning of the interval)
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Heun’s Method
One way to improve Euler’s method is to determine the 

derivative at the beginning and predict it for the 
ending of the interval and average them:
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In Euler’s method we use the slope at the beginning of the 
interval

to extrapolate to yi+1

(and we would be done).

In Heun’s method this is just an intermediate prediction. We 
now use it to estimate the slope at the end of the interval
  

and then calculate the average of both slopes for the 
increment function:
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The 2nd step 

can be iterated

Both, Euler’s and Heun’s methods are simple Runge-Kutta 
methods (1st order and 2nd order).
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Runge-Kutta Methods
For RK methods, the increment function φ can generally be 

written as:

    where the a’s are constants and the k’s are
estimates of the slope at different positions

    where the p’s and q’s are constants.

  

€ 

φ = a1k1 + a2k2 ++ ankn

  

€ 

k1 = f ti , yi( )
k2 = f ti + p1h, yi + q11k1h( )
k3 = f ti + p2h, yi + q21k1h+ q22k2h( )


kn = f ti + pn−1h, yi + qn−1,1k1h+ qn−1,2k2h++ qn−1,n−1kn−1h( )
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The coefficients are typically chosen by setting the general 
equations equal to the Taylor Series, which yields an 
underdetermined system for n>1.

Some coefficients have to be chosen. Hence, there are 
infinitely many RK schemes for each n>1.

For n=1 we get Euler.

For n=2 and a1 = a2 = 0.5 and p1 = q11 = 1 we get Heun.
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Classical Fourth-Order RK Method

The most popular RK methods are fourth-order, and 
the most commonly used form is:

where:
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All ks are approximations of the slope.
φ is a weighted average of these slopes. 
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Implement the 4th-order RK method by modifying 
“eulode.m” appropriately and solve our example. 

Compare errors with our previous approximation and 
with the true solution for this method.
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t       y_Euler   y_RK4     y_true   Eul.rel.err.(%) RK4rel.err.(%)
0             2.0000    2.0000       2.0000    0              0
1.0000    5.0000    6.2010       6.1946  19.2849     0.1034
2.0000   11.4022   14.8625   14.8439   23.1863    0.1250
3.0000   25.5132   33.7213   33.6772   24.2418    0.1312
4.0000   56.8493   75.4392   75.3390   24.5420    0.1330

See my scripts “rk4ode.m” and “comparison2.m”
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What we’ve done so far was meant to explain “what’s 
under the hood” of the Matlab solvers for ODEs, e.g.:
- ode23
- ode45
(implementations of RK solvers of different order)

Syntax:
[t, y]=ode23(@function,tspan,y0)
 
where
  y is a vector of solutions,
  t is a vector of the independent variable values  
corresponding to y,
  you must provide rhs as a function (as before),
  tspan is the integration interval, e.g. [ti tf] or [ti:h:tf], and
  y0 is the vector of initial condition.
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Let’s repeat our example with ode23 and ode45.
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 t    y_Euler   y_RK4  y_ODE23 y_ODE45 y_true   Eul.RE(%)        ODE23 RE(%)  ODE45 RE (%)
 0    2.0000    2.0000    2.0000    2.0000    2.0000     0            0              0            0
 1    5.0000    6.2010    6.1935    6.1946    6.1946   19.2849    0.1034    0.0186    0.0000
 2   11.4022 14.8625  14.8392  14.8439  14.8439   23.1863    0.1250    0.0316    0.0000
 3   25.5132 33.7213  33.6652  33.6772  33.6772   24.2418    0.1312    0.0355    0.0000
 4   56.8493 75.4392  75.3150  75.3390  75.3390   24.5420    0.1330    0.0318    0.0000

RK4 RE(%)

See script “comparison3.m”

Notice the dramatic improvement in accuracy.
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All the methods discussed so far apply also to systems of 
ODEs

We will now consider two examples:
• Lorenz equations
• Lotka-Volterra predator-prey model
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The reason why weather prediction is so difficult is that 
atmospheric models (or the DEs representing them) have 
properties that make them behave chaotically. The 
results will change wildly for small changes in initial 
conditions, numerical schemes, etc.

Ed Lorenz (MIT) described this phenomenon in 1961. 

He developed these simple equations to relate the 
intensity of atmospheric fluid motion x to temperature 
variations y and z in the horizontal and vertical directions:
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We’ll solve this with 
Matlab’s ode45 solver for 
initial conditions:

x(0) = -8, 
y(0) = 8, 
z(0) = 27 

and for t=0 to 20
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Now rerun with slightly different initial conditions:

x(0) = -8.01, 
y(0) = 8, 
z(0) = 27 

and compare x for both cases. 
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Note how the solutions diverge after t=5.
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Notice how the solution has two orbits and a critical 
point (also called strange attractor) where it jumps 
between them. 
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Now compare solutions determined with ode45 and 
ode23 for the same initial conditions:

x(0) = -8, 
y(0) = 8, 
z(0) = 27 

and for t=0 to 20
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Notice how small differences in the numerical 
schemes lead to different behavior. 

See scripts “lorenz.m” and “solving_lorenz.m”
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This behavior led Ed Lorenz to the conclusion that long-
range weather forecasts might be impossible.

Note, that I am not making statements about climate 
forecasts!
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Passing parameters to an ODE solver

In the above example we hard-coded the parameters into the 
function. In real applications we will probably want to change 
parameters frequently.

We can modify “lorenz.m” as in “lorenz2.m”:
function f = lorenz2(t,x,sigma,rho,beta)

And call the ode solver as follows:
>> [t, x] = ode45(@lorenz2,[0 20],xini,[],
10,28,8/3);

Note that the 4th argument is reserved for options (see help 
ode45). We need to use [] in our case because we don’t want to 
specify any options. 
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Lotka-Volterra model
The earliest predator-prey models were developed 
independently in the early 20th century by Italian mathematician 
Vito Volterra and American biologist Alfred Lotka.

The simplest version:

where x and y represent the biomass of prey and predators, 
respectively,
a is the prey growth rate, c the predator death rate,
b and d are predation-related rates describing prey loss and 
predator growth.

Monday, October 3, 2011



Solve the Lotka-Volterra model with the Euler method and 
ODE45 passing the parameters externally.

Use the following values: 
a = 1.2, b = 0.6, c = 0.8,  and d = 0.3
Initial conditions of x = 2, y = 1
Integrate from t = 0 to 40 using step size of 0.0625

Plot the results to visualize how the dependent variables 
evolve over time.  In addition, graph the dependent 
variables against each other. 

Is the time step appropriate for the Euler method?

Note: You will have to modify “eulode.m” for a system of 
ODEs.
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See “predprey.m”, “eulsys.m” and “predprey_driver.m”
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