
Matlab for Oceanography
Meeting 1

Outline:
Runge-Kutta methods for ODEs:
- Euler
- Heun
- RK4
Lorenz equations
Lotka-Volterra model

Monday, October 3, 2011

Solving Ordinary Differential Equations
(ODEs): Runge-Kutta methods

• We will consider differential equations of the general
form:

• The methods we will discuss have the general form:

 new value = old value + slope*step size
 or

where φ is called the increment function, and is used
to extrapolate from an old value yi to a new value yi+1.

Monday, October 3, 2011

Euler’s Method

, which estimates the
slope of f at ti,
and use it as the
increment function:

The simplest way of estimating the increment is to take the
derivative at ti

Monday, October 3, 2011

The numerical solution of ODEs involves two types of
errors:
– Truncation errors, caused by the nature of the techniques

employed
– Roundoff errors, caused by the limited number of significant

digits that can be retained
The total, or global truncation error can be further split

into:
– local truncation error that results from the applied method

over a single step, and
– propagated truncation error that results from the

approximations produced during previous steps.

Error Analysis for Euler’s Method

Monday, October 3, 2011

Let’s explore the error using an example:

Integrate from t = 0 to 4 with a step size of 1 and
initial condition y(0) = 2.

We’ll use the function “eulode.m” and compare
against the analytical solution

Error Analysis for Euler’s Method

Monday, October 3, 2011

Matlab elements to use with “eulode.m”:

Function handle: used to pass the handle to a function as
an argument; syntax: @myfun

When you have created a function “myfun.m” that evaluates
the rhs of our example equation you can pass it to
“eulode.m” as follows:
>> [t,y] = eulode(@myfun,…)

The functions “nargin” and “nargout” allow you to test with
how many input and output arguments a function was
called.

“varargin” allows you to specify a function with a variable
list of input parameters; example:
 function y = myfun(varargin)

Monday, October 3, 2011

Let’s look at “eulode.m” first.

Then “example.m”, “comparison.m” and “solution.m”.

Note that we could have used anonymous functions
instead of separate scripts for the “example” and “solution”.

Syntax:
>> myfun = @(x) sin(x)+2*cos(x);
>> plot([0:0.1:4],myfun([0:0.1:4]))

Look at “comparison_selfcontained.m”

Monday, October 3, 2011

 t y_Euler y_true relative error (%)
 0 2.0000 2.0000 0
 1.0000 5.0000 6.1946 19.2849
 2.0000 11.4022 14.8439 23.1863
 3.0000 25.5132 33.6772 24.2418
 4.0000 56.8493 75.3390 24.5420

Output from script “comparison.m”

The error can be reduced in two ways:
- smaller time steps
- modification of the scheme (a fundamental source of
error is that the Euler scheme uses the slope at the
beginning of the interval)

Monday, October 3, 2011

Heun’s Method
One way to improve Euler’s method is to determine the

derivative at the beginning and predict it for the
ending of the interval and average them:

Monday, October 3, 2011

In Euler’s method we use the slope at the beginning of the
interval

to extrapolate to yi+1

(and we would be done).

In Heun’s method this is just an intermediate prediction. We
now use it to estimate the slope at the end of the interval

and then calculate the average of both slopes for the
increment function:

Monday, October 3, 2011

The 2nd step

can be iterated

Both, Euler’s and Heun’s methods are simple Runge-Kutta
methods (1st order and 2nd order).

Monday, October 3, 2011

Runge-Kutta Methods
For RK methods, the increment function φ can generally be

written as:

 where the a’s are constants and the k’s are
estimates of the slope at different positions

 where the p’s and q’s are constants.

€

φ = a1k1 + a2k2 ++ ankn

€

k1 = f ti , yi()
k2 = f ti + p1h, yi + q11k1h()
k3 = f ti + p2h, yi + q21k1h+ q22k2h()


kn = f ti + pn−1h, yi + qn−1,1k1h+ qn−1,2k2h++ qn−1,n−1kn−1h()

Monday, October 3, 2011

The coefficients are typically chosen by setting the general
equations equal to the Taylor Series, which yields an
underdetermined system for n>1.

Some coefficients have to be chosen. Hence, there are
infinitely many RK schemes for each n>1.

For n=1 we get Euler.

For n=2 and a1 = a2 = 0.5 and p1 = q11 = 1 we get Heun.

Monday, October 3, 2011

Classical Fourth-Order RK Method

The most popular RK methods are fourth-order, and
the most commonly used form is:

where:

Monday, October 3, 2011

All ks are approximations of the slope.
φ is a weighted average of these slopes.

Monday, October 3, 2011

Implement the 4th-order RK method by modifying
“eulode.m” appropriately and solve our example.

Compare errors with our previous approximation and
with the true solution for this method.

Monday, October 3, 2011

t y_Euler y_RK4 y_true Eul.rel.err.(%) RK4rel.err.(%)
0 2.0000 2.0000 2.0000 0 0
1.0000 5.0000 6.2010 6.1946 19.2849 0.1034
2.0000 11.4022 14.8625 14.8439 23.1863 0.1250
3.0000 25.5132 33.7213 33.6772 24.2418 0.1312
4.0000 56.8493 75.4392 75.3390 24.5420 0.1330

See my scripts “rk4ode.m” and “comparison2.m”

Monday, October 3, 2011

What we’ve done so far was meant to explain “what’s
under the hood” of the Matlab solvers for ODEs, e.g.:
- ode23
- ode45
(implementations of RK solvers of different order)

Syntax:
[t, y]=ode23(@function,tspan,y0)

where
 y is a vector of solutions,
 t is a vector of the independent variable values
corresponding to y,
 you must provide rhs as a function (as before),
 tspan is the integration interval, e.g. [ti tf] or [ti:h:tf], and
 y0 is the vector of initial condition.

Monday, October 3, 2011

Let’s repeat our example with ode23 and ode45.

Monday, October 3, 2011

 t y_Euler y_RK4 y_ODE23 y_ODE45 y_true Eul.RE(%) ODE23 RE(%) ODE45 RE (%)
 0 2.0000 2.0000 2.0000 2.0000 2.0000 0 0 0 0
 1 5.0000 6.2010 6.1935 6.1946 6.1946 19.2849 0.1034 0.0186 0.0000
 2 11.4022 14.8625 14.8392 14.8439 14.8439 23.1863 0.1250 0.0316 0.0000
 3 25.5132 33.7213 33.6652 33.6772 33.6772 24.2418 0.1312 0.0355 0.0000
 4 56.8493 75.4392 75.3150 75.3390 75.3390 24.5420 0.1330 0.0318 0.0000

RK4 RE(%)

See script “comparison3.m”

Notice the dramatic improvement in accuracy.

Monday, October 3, 2011

All the methods discussed so far apply also to systems of
ODEs

We will now consider two examples:
• Lorenz equations
• Lotka-Volterra predator-prey model

Monday, October 3, 2011

The reason why weather prediction is so difficult is that
atmospheric models (or the DEs representing them) have
properties that make them behave chaotically. The
results will change wildly for small changes in initial
conditions, numerical schemes, etc.

Ed Lorenz (MIT) described this phenomenon in 1961.

He developed these simple equations to relate the
intensity of atmospheric fluid motion x to temperature
variations y and z in the horizontal and vertical directions:

Monday, October 3, 2011

We’ll solve this with
Matlab’s ode45 solver for
initial conditions:

x(0) = -8,
y(0) = 8,
z(0) = 27

and for t=0 to 20

Monday, October 3, 2011

Monday, October 3, 2011

Now rerun with slightly different initial conditions:

x(0) = -8.01,
y(0) = 8,
z(0) = 27

and compare x for both cases.

Monday, October 3, 2011

Note how the solutions diverge after t=5.

Monday, October 3, 2011

Notice how the solution has two orbits and a critical
point (also called strange attractor) where it jumps
between them.

Monday, October 3, 2011

Now compare solutions determined with ode45 and
ode23 for the same initial conditions:

x(0) = -8,
y(0) = 8,
z(0) = 27

and for t=0 to 20

Monday, October 3, 2011

Notice how small differences in the numerical
schemes lead to different behavior.

See scripts “lorenz.m” and “solving_lorenz.m”
Monday, October 3, 2011

This behavior led Ed Lorenz to the conclusion that long-
range weather forecasts might be impossible.

Note, that I am not making statements about climate
forecasts!

Monday, October 3, 2011

Passing parameters to an ODE solver

In the above example we hard-coded the parameters into the
function. In real applications we will probably want to change
parameters frequently.

We can modify “lorenz.m” as in “lorenz2.m”:
function f = lorenz2(t,x,sigma,rho,beta)

And call the ode solver as follows:
>> [t, x] = ode45(@lorenz2,[0 20],xini,[],
10,28,8/3);

Note that the 4th argument is reserved for options (see help
ode45). We need to use [] in our case because we don’t want to
specify any options.

Monday, October 3, 2011

Lotka-Volterra model
The earliest predator-prey models were developed
independently in the early 20th century by Italian mathematician
Vito Volterra and American biologist Alfred Lotka.

The simplest version:

where x and y represent the biomass of prey and predators,
respectively,
a is the prey growth rate, c the predator death rate,
b and d are predation-related rates describing prey loss and
predator growth.

Monday, October 3, 2011

Solve the Lotka-Volterra model with the Euler method and
ODE45 passing the parameters externally.

Use the following values:
a = 1.2, b = 0.6, c = 0.8, and d = 0.3
Initial conditions of x = 2, y = 1
Integrate from t = 0 to 40 using step size of 0.0625

Plot the results to visualize how the dependent variables
evolve over time. In addition, graph the dependent
variables against each other.

Is the time step appropriate for the Euler method?

Note: You will have to modify “eulode.m” for a system of
ODEs.

Monday, October 3, 2011

See “predprey.m”, “eulsys.m” and “predprey_driver.m”

Monday, October 3, 2011

