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Finding roots - Example problem 1 
Consider the reversible chemical reaction 2A+B ↔ C with 

equilibrium K = [C]/([A]2[B]).

Given K and initial concentrations of all three species you 
want to know the equilibrium concentrations of these 
species.
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Finding roots - Example problem 1 
Consider the reversible chemical reaction 2A+B ↔ C with 

equilibrium K = [C]/([A]2[B]).

Given K and initial concentrations of all three species you 
want to know the equilibrium concentrations of these 
species.

Assuming x is the number of mols of C that are produced, 
K = (Cini+x)/(Aini-2x)2/(Bini-x).

This is a third-order polynomial in x (can’t be solved 
analytically).
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Finding roots - Example problem 2 

Suppose you are determining the ballasting of a 
density-driven device (e.g. an Argo float) to achieve a 
certain fall rate (w) because of the sampling rate and 
response time of your sensors.  

A common approximation of the falling/rising 
behavior such a device is 
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vertical 
position

time

gravitational acceleration

mass of the 
device

mass of displaced 
water

water density

drag coefficient

effective surface area

vertical velocity

This is a first-order ODE in w (fall velocity).

Wednesday, October 12, 2011



Wednesday, October 12, 2011



With initial conditions w(t=0)=0 the ODE can be solved 
analytically:

where

It is not possible to isolate m for a given value of w.
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With initial conditions w(t=0)=0 the ODE can be solved 
analytically:

where

It is not possible to isolate m for a given value of w.

An alternative way of looking at this problem is this:

We are looking for the value of m that makes f(m) = 0.
We have transferred to problem into a root finding 
problem.
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     A simple method for obtaining the 
estimate of the root of the equation 
f(x)=0 is to make a plot of the function 
and observe where it crosses the x-axis.

    Graphing the function can also indicate 
where roots may be and where some 
root-finding methods may fail. Some cases 
are:
• Same sign, no roots
• Different sign, one root
• Same sign, two roots
• Different sign, three roots 
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Diversity of cases makes it difficult to 
develop foolproof numerical 
methods for root finding.

Special cases:
• Multiple roots
• Different sign, even number of roots
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Bracketing Methods

Bracketing methods are based on making two initial guesses 
that “bracket” the root - that is, are on either side of the root.

Brackets are formed by finding two guesses xl and xu where 
the sign of the function changes; that is, where f(xl ) f(xu ) < 0

The incremental search method tests the value of the function 
at evenly spaced intervals and finds brackets by identifying 
function sign changes between neighboring points.
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Let’s look at an implementation of the incremental search 
method: “incsearch.m”

and find the roots of the following function
 first graphically, 
 than by incremental search 

                           f(x) = sin(10x)-cos(3x)

within the interval [3,6].

Look at my “Finding_roots_example1.m”
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Pitfalls of Incremental Search

If the spacing between the points of an incremental search are 
too far apart, brackets may be missed due to capturing an even 
number of roots within two points.
Incremental searches cannot find brackets containing even-
multiplicity roots.

found

missed

missed

missedmissed

missed
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Bisection method

Is a variation of the 
incremental search 
method in which the 
interval is always divided 
in half.
If a function changes sign 
over an interval, the 
function value at the 
midpoint is evaluated.
The location of the root 
is then determined as 
lying within the 
subinterval where the sign 
change occurs.
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The absolute error is reduced by a factor of 2 for each iteration.

We can use this to determine an upper limit on the absolute 
error of the approximation for every iteration. 

The absolute error estimate is solely dependent on the absolute 
error at the start of the process (the space between the two 
guesses) and the number of iterations:

Thus the required number of iterations to obtain a particular 
absolute error can be calculated based on the initial guesses:
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Let’s look at an implementation of the bisection method: 
“bisect.m”

and then use it to determine the mass that a sinking Argo 
float would need to have to sink a speed of 2 m/s 
(at t = 10 s).

Use the following parameters:
  density of seawater     1035 kg m-3 
  drag coefficient   CD = 0.25
  surface area          A = 0.2 m2

  mass of seawater mw= 207 kg (assuming a float volume of 0.2 m3)

Look at “Bisection_method_example.m”
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Of course Matlab has built-in functions for 
root finding:
• fzero (general function that identifies the 
root closest to an initial guess or within and 
interval)
• roots (for polynomials)
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fzero usage:
x = fzero(function,x0) 
where x0 is an initial guess (scalar) or a 2-element 
vector that specifies a search interval (sign change has 
to occur)

x = fzero(function,x0,options)
where options is a structure created with optimset; 
allows to control level of output, termination 
criterion, etc.

Note that there is no obvious way of passing 
arguments to function (can be done with anonymous 
function handle though).
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optimset usage:
options = optimset(‘para1’,val1,‘para2’,val2,...)
will create options structure with values as specified 
(unspecified values will lead to default value being used)

Parameters for the option structure include:

Display - Level of display [ off | iter | notify | final ]
TolX - Termination tolerance on X [ positive scalar ]
FunValCheck - Check for invalid values, such as NaN or 
complex, from user-supplied functions [ {off} | on ]
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Using anonymous function to pass arguments:

Parameter-dependent function:
function f = myfun(x,c)
f = cos(c*x);

First, set parameter, than use anonymous function 
with only one input argument:
c = 2; 
x = fzero(@(x) myfun(x,c),0.1)
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 Now use fzero to solve the falling float problem.

See my script “Fzero_fallingfloat.m”
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roots usage:

roots(C)
finds the roots of the polynomial 
f(x) = C(1)xN + ... + C(N+1)
assuming that C has N+1 elements.

Example: polynomial f(x) = x3-3x2-x+3
>> roots([1 -3 -1 3])
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Let’s return to example 1 from the beginning 
today:
Consider the reversible chemical reaction 2A+B ↔ C 

with equilibrium K = [C]/([A]2[B]).

Assuming x is the number of mols of C that are 
produced, 
K = (Cini+x)/(Aini-2x)2/(Bini-x).

Solve this for K=0.016, Aini = 42, Bini = 28, and Cini = 4 
first graphically, then using one of the numerical methods 
we described. Make sure to check your solution.

See my script “Solving_example1.m”
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