Lab 5
 Limiting Behaviour of Age-structured Populations

Eigenvalues and eigenvectors
Marine Modelling February 04, 2018

Katja Fennel
Oceanography Dalhousie University

Limiting Behaviour of
Age-structured Populations

Katja Fennel

Recap

Examples

Limiting Behaviour of
Age-structured
Populations
Katja Fennel

Recap

Examples

Recall that the dominant eigenvalue (i.e. the eigenvalue with largest absolute magnitude) of Leslie matrix M tells us about the limiting behavior of an age-structured population.
Specifically, the total population will:

- increase for $\lambda_{1}>1$
- be stable for $\lambda_{1}=1$

Recap

Examples

- decrease to extinction for $\lambda_{1}<1$

Recall that the dominant eigenvalue (i.e. the eigenvalue with largest absolute magnitude) of Leslie matrix M tells us about the limiting behavior of an age-structured population.
Specifically, the total population will:

- increase for $\lambda_{1}>1$
- be stable for $\lambda_{1}=1$
- decrease to extinction for $\lambda_{1}<1$

The eigenvalues of M are the roots of the characteristic polynomial:

$$
p(\lambda)=\operatorname{det}(M-\lambda I)
$$

Recall that the dominant eigenvalue (i.e. the eigenvalue with the limiting behavior of an age-structured population.
Specifically, the total population will:

- increase for $\lambda_{1}>1$
- be stable for $\lambda_{1}=1$
- decrease to extinction for $\lambda_{1}<1$

The eigenvalues of M are the roots of the characteristic polynomial:

$$
p(\lambda)=\operatorname{det}(M-\lambda I)
$$

If M has dimensions $n \times n$ there are n eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ (not necessarily distinct) and n eigenvectors $v_{1}, v_{2}, \cdots v_{n}$.

Recall that the dominant eigenvalue (i.e. the eigenvalue with the limiting behavior of an age-structured population.
Specifically, the total population will:

- increase for $\lambda_{1}>1$
- be stable for $\lambda_{1}=1$
- decrease to extinction for $\lambda_{1}<1$

The eigenvalues of M are the roots of the characteristic polynomial:

$$
p(\lambda)=\operatorname{det}(M-\lambda I)
$$

If M has dimensions $n \times n$ there are n eigenvalues
$\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ (not necessarily distinct) and n eigenvectors
$v_{1}, v_{2}, \cdots v_{n}$.
The eigenvector corresponding to the dominant eigenvalue (v_{1}) gives us the relative age distribution for large values of time. In other words, the age distribution of the population will approach some scalar multiple of that eigenvector with time.

Limiting Behaviour of Age-structured Populations

Katja Fennel
Suppose we have three age classes, females in 2nd and 3rd age class produce 4 and 3 female offspring, and suppose that 50% and 25% of females live to second and third age class, respectively.

Suppose we have three age classes, females in 2nd and 3rd age class produce 4 and 3 female offspring, and suppose that 50% and 25% of females live to second and third age class, respectively. The Leslie matrix is:

$$
M=\left(\begin{array}{ccc}
0 & 4 & 3 \\
0.5 & 0 & 0 \\
0 & 0.25 & 0
\end{array}\right)
$$

Suppose we have three age classes, females in 2nd and 3rd age class produce 4 and 3 female offspring, and suppose that 50% and 25% of females live to second and third age class, respectively. The Leslie matrix is:

$$
M=\left(\begin{array}{ccc}
0 & 4 & 3 \\
0.5 & 0 & 0 \\
0 & 0.25 & 0
\end{array}\right)
$$

Suppose the initial age distribution is:

$$
\underline{x}_{0}=\left(\begin{array}{l}
10 \\
10 \\
10
\end{array}\right)
$$

Enter both

$$
\begin{aligned}
& \gg \mathrm{M}=[043 ; 0.500 ; 00.250] ; \\
& \gg 0=[10 ; 10 ; 10] ;
\end{aligned}
$$

We will follow the population over 10 years and want to hold all population vectors in one array X.

```
>> M =[0 4 3; 0.5 0 0; 0 0.25 0];
>> x0 = [10;10;10];
\(\gg \mathrm{M}=[0 \mathrm{~A} 3 ; 0.500,00.250] ;\)
>> \(x 0=[10 ; 10 ; 10] ;\)
```

We will follow the population over 10 years and want to hold all population vectors in one array X.
Define this array, initialize with zeros, and store initial age distribution in first column.

```
>> M =[0 4 3; 0.5 0 0; 0 0.25 0];
>> x0 = [10;10;10];
> M = [0 3 3; 0.5 0 0; 0.25 0 \(]\);
>> \(x 0=[10 ; 10 ; 10] ;\)
```

We will follow the population over 10 years and want to hold all population vectors in one array X. Define this array, initialize with zeros, and store initial age distribution in first column.
>> $\mathrm{X}=$ zeros $(3,11)$;
>> $X(:, 1)=x 0 ;$
$\gg \mathrm{M}=\left[\begin{array}{llllllll}0 & 4 & 3 ; & 0.5 & 0 & 0 ; & 0.25 & 0\end{array}\right] ;$
>> $x 0=[10 ; 10 ; 10]$;
We will follow the population over 10 years and want to hold all population vectors in one array X.
Define this array, initialize with zeros, and store initial age distribution in first column.
>> $\mathrm{X}=$ zeros $(3,11)$;
>> $X(:, 1)=x 0 ;$
Now calculate age-distribution over the next 10 years:
>> for $k=2: 11, X(:, k)=M * X(:, k-1)$; end
View the results:
>> X

```
>> X
```

$$
\begin{aligned}
& X= \\
& 1.0 e+03
\end{aligned}
$$

Columns 1 through 6

0.0100	0.0700	0.0275	0.1437	0.0813	0.2978
0.0100	0.0050	0.0350	0.0138	0.0719	0.0406
0.0100	0.0025	0.0013	0.0088	0.0034	0.0180

Columns 7 through 11

0.2164	0.6261	0.5445	1.3333	1.3238
0.1489	0.1082	0.3130	0.2722	0.6667
0.0102	0.0372	0.0271	0.0783	0.0681

Limiting Behaviour of
Age-structured Populations

Katja Fennel

Recap

You noted the scale factor 10^{3}. Let's try a friendlier format:

```
>> format short g
```

>> X
$\mathrm{X}=$
Columns 1 through 6

10	70	27.5	143.75	81.25	297.81
10	5	35	13.75	71.875	40.625
10	2.5	1.25	8.75	3.4375	17.969

216.41	626.09	544.49	1333.3	1323.8
148.91	108.2	313.05	272.25	666.67
10.156	37.227	27.051	78.262	68.062

Columns 7 through 11

Plot:

```
>> t=0:10;
>> plot(t, X')
>> xlabel('Time')
>> ylabel('Number of females')
>> legend('Y1','Y2','Y3','Location', 'Best')
```

or plot as semi-log plot:
>> figure
\gg semilogy $\left(t, X^{\prime}\right)$
>> xlabel('Time')
>> ylabel('Number of females')
>> legend('Y1','Y2','Y3','Location', 'Best')

Now let's calculate the eigenvalues and eigenvectors of M :
Katja Fennel
>> [V,D] = eig(M);

Limiting Behaviour of

Katja Fennel
>> [V,D] = eig(M);
Try help eig and read the first two paragraphs.

>> [V,D] = eig(M);
Try help eig and read the first two paragraphs. The matrix V contains the eigenvectors. The matrix D contains the corresponding eigenvalues on it's main diagonal.

Now let's calculate the eigenvalues and eigenvectors of M :
>> [V,D] = eig(M);
Try help eig and read the first two paragraphs. The matrix V contains the eigenvectors. The matrix D contains the corresponding eigenvalues on it's main diagonal. Let's look at both:

```
>> V
    V =
\begin{tabular}{rrr}
0.94737 & -0.93201 & 0.22588 \\
0.31579 & 0.356 & -0.59137 \\
0.052632 & -0.067989 & 0.77412
\end{tabular}
>> D
    D =
\begin{tabular}{rrr}
1.5 & 0 & 0 \\
0 & -1.309 & 0 \\
0 & 0 & -0.19098
\end{tabular}
```


Let's check that $M=V D V^{-1}$

Let's check that $M=V D V^{-1}$

$$
\begin{aligned}
& \text { >> } \mathrm{V} \star \mathrm{D} \star \operatorname{inv}(\mathrm{~V}) \\
& \text { ans }= \\
& -1.1839 \mathrm{e}-16 \\
& 0.5 \\
& -8.6606 \mathrm{e}-16 \\
& -6.245 \mathrm{e}-17
\end{aligned}
$$

Is this equal to our Leslie matrix M ?

Our dominant eigenvalue is $1.5(D(1,1))$ and the corresponding eigenvector is the first column of V (i.e. $\mathrm{V}(:, 1)$)
>> v1 = V(:,1)
v1 =
0.94737
0.31579
0.052632

Note that Matlab returns normalized eigenvectors by default:
>> $\mathrm{V1}{ }^{\prime} * \mathrm{v} 1$
ans $=$

1

To get the relative age distribution in the future, we can simply divide each element of v 1 by the sum of all elements in v 1 :

```
>> v1=v1/sum(v1)
    v1 =
    0.72
    0.24
    0.04
```

I.e. 72% of the total population will be in age class $1,24 \%$ in age class 2 , and 4% in age class 3.

To get the relative age distribution in the future, we can simply divide each element of v 1 by the sum of all elements in v 1 :

```
>> v1=v1/sum(v1)
    v1 =
    0.72
    0.24
    0.04
```

I.e. 72% of the total population will be in age class $1,24 \%$ in age class 2, and 4\% in age class 3.
Let's test this by calculating age distribution after 100 years:

```
>> x100=M^100*x0
    x100 =
    1.1555e+19
    3.8516e+18
    6.4194e+17
>> x = x100/sum(x100)
    x =
            0.72
            0.24
            0.04
```

