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5.2

Recall

that the dominant eigenvalue (i.e. the eigenvalue with
largest absolute magnitude) of Leslie matrix M tells us about
the limiting behavior of an age-structured population.
Specifically, the total population will:

• increase for λ1 > 1
• be stable for λ1 = 1
• decrease to extinction for λ1 < 1

The eigenvalues of M are the roots of the characteristic
polynomial:

p(λ) = det(M − λI)

If M has dimensions n × n there are n eigenvalues
λ1, λ2, · · · , λn (not necessarily distinct) and n eigenvectors
v1, v2, · · · vn.
The eigenvector corresponding to the dominant eigenvalue (v1)
gives us the relative age distribution for large values of time. In
other words, the age distribution of the population will
approach some scalar multiple of that eigenvector with time.
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5.3

Suppose we have three age classes, females in 2nd and 3rd
age class produce 4 and 3 female offspring, and suppose that
50% and 25% of females live to second and third age class,
respectively.

The Leslie matrix is:

M =

 0 4 3
0.5 0 0
0 0.25 0


Suppose the initial age distribution is:

x0 =

 10
10
10


Enter both
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5.4

>> M =[0 4 3; 0.5 0 0; 0 0.25 0];
>> x0 = [10;10;10];

We will follow the population over 10 years and want to hold all
population vectors in one array X .

Define this array, initialize with zeros, and store initial age
distribution in first column.

>> X = zeros(3,11);
>> X(:,1) = x0;

Now calculate age-distribution over the next 10 years:

>> for k=2:11, X(:,k) = M*X(:,k-1); end

View the results:

>> X
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5.5

>> X

X =

1.0e+03 *

Columns 1 through 6

0.0100 0.0700 0.0275 0.1437 0.0813 0.2978
0.0100 0.0050 0.0350 0.0138 0.0719 0.0406
0.0100 0.0025 0.0013 0.0088 0.0034 0.0180

Columns 7 through 11

0.2164 0.6261 0.5445 1.3333 1.3238
0.1489 0.1082 0.3130 0.2722 0.6667
0.0102 0.0372 0.0271 0.0783 0.0681
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5.6

You noted the scale factor 103.

Let’s try a friendlier format:

>> format short g
>> X

X =

Columns 1 through 6

10 70 27.5 143.75 81.25 297.81
10 5 35 13.75 71.875 40.625
10 2.5 1.25 8.75 3.4375 17.969

Columns 7 through 11

216.41 626.09 544.49 1333.3 1323.8
148.91 108.2 313.05 272.25 666.67
10.156 37.227 27.051 78.262 68.062
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5.7

Plot:

>> t=0:10;
>> plot(t,X’)
>> xlabel(’Time’)
>> ylabel(’Number of females’)
>> legend(’Y1’,’Y2’,’Y3’,’Location’, ’Best’)

or plot as semi-log plot:

>> figure
>> semilogy(t,X’)
>> xlabel(’Time’)
>> ylabel(’Number of females’)
>> legend(’Y1’,’Y2’,’Y3’,’Location’, ’Best’)
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5.10

Now let’s calculate the eigenvalues and eigenvectors of M:

>> [V,D] = eig(M);

Try help eig and read the first two paragraphs. The matrix V
contains the eigenvectors. The matrix D contains the
corresponding eigenvalues on it’s main diagonal. Let’s look at
both:

>> V
V =

0.94737 -0.93201 0.22588
0.31579 0.356 -0.59137

0.052632 -0.067989 0.77412

>> D
D =

1.5 0 0
0 -1.309 0
0 0 -0.19098
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5.11

Let’s check that M = VDV−1

>> V*D*inv(V)

ans =

-1.1839e-16 4 3
0.5 -8.6606e-16 -8.3267e-17

-6.245e-17 0.25 -5.5511e-17

Is this equal to our Leslie matrix M?
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5.12

Our dominant eigenvalue is 1.5 (D(1,1)) and the
corresponding eigenvector is the first column of V (i.e. V(:,1))

>> v1 = V(:,1)

v1 =

0.94737
0.31579

0.052632

Note that Matlab returns normalized eigenvectors by default:

>> v1’*v1

ans =

1
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5.13

To get the relative age distribution in the future, we can simply
divide each element of v1 by the sum of all elements in v1:

>> v1=v1/sum(v1)
v1 =

0.72
0.24
0.04

I.e. 72% of the total population will be in age class 1, 24% in
age class 2, and 4% in age class 3.

Let’s test this by calculating age distribution after 100 years:

>> x100=M^100*x0
x100 =
1.1555e+19
3.8516e+18
6.4194e+17

>> x = x100/sum(x100)
x =

0.72
0.24
0.04
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