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7.1

1 Objectives

Objectives
We will work through two examples:

• a Gaussian peak superimposed on a constant background (general linear regression problem)
• an exponentially growing phytoplankton population (non-linear regression problem)
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2 Example 1: "Defined" Gaussian Peak over constant Back-
ground

Example 1: "Defined" Gaussian Peak over constant Background
Suppose you have a data set that describes a background signal (with random noise) but that su-

perimposed on the background is a contaminating signal that introduced a Gaussian peak at time=15s
and with a standard deviation of 6s.
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Example 1: "Defined" Gaussian Peak over constant Background

1



Suppose you are interested in the value of the background without the Gaussian contamination.
The model function would look like this:

y(t) = a1 +a2 exp(− (t −15)2

62 )

You could determine this by general linear regression using the design matrix. Follow along with
script defined_Gaussian_peak.m

First load data (t,y).

load defined_Gaussian_peak_on_const_bg
7.4

% build design matrix
A = [ones(length(t),1) exp(-((t-15)/6).^2)’];

[U,S,V] = svd(A,0); % SVD of the design matrix
W = diag(1./diag(S)); % Note: we didn’t check
% for zero singular values
a = V*W*U’*y; % our coefficients
[n m] = size(A);
redchisqu = sum((A*a-y).^2)/(n-m); % reduced
% Chi-squared
errmat = redchisqu*V*W.^2*V’; % covariance matrix

7.5
Results:

a = 3.9728 1.6842
sa = sqrt(diag(errmat))
sa = 0.0668 0.1732
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3 Example 2: Exponential Phytoplankton Growth

Example 2: Exponential Phytoplankton Growth
A simple non-linear problem would be exponential phytoplankton growth.

When phytoplankton is suddenly provided with sufficient light and nutrients it will start to grow
nearly exponentially for a while.

∂P
∂ t

= µP
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Here, µ is the specific growth rate with units of inverse time. Integration yields

P = P0 exp(µt)

or, we may assume there is a background population that doesn’t participate in the growth. Then

P = P1 +P2 exp(µt)
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Consider the Lobo data from spring 2008 (x is time; y is chlorophyll concentration):

We want to fit our above model to the data (we may be especially interested in the growth param-
eter µ). 7.8

Model:
P = P1 +P2 exp(µt)

Since our model is non-linear we are going to use the non-linear least squares fitting routine
nlleasqr.m

The routine is called thus:

[f,a,kvg,iter,corp,covp,covr,stdresid,Z,r2] = ...
nlleasqr(x,y,ain,’func_name’);

with input parameters x, y representing our data, ain is a vector that holds the initial guess of our
parameters, and func_name is the name of a Matlab function that contains our model (we need to
provide this function).

Follow along using script non_lin_phyto_fit.m (you’ll also need modfunc1.m and dfdp.m).
7.9

First a quick look at modfunc1.m:

function out = modfunc1(x,a)
out = a(1) + a(2)*exp(a(3)*x);

7.10

% load data
load chl_spring08
% y contains chlorophyll fluorescence [micro g/l]
% x contains time in days since 2001-1-1 [UTC]

% QC: clean up NaNs in y
bad = find(isnan(y));
y(bad) = [];
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x(bad) = [];

% modify x so that it’s relative to beginning of
% the data set
x = x-x(1);

% plot (we need to get an idea of values for
% initial parameter guess)
figure
subplot(1,2,1)
plot(x,y,’*-’)
subplot(1,2,2)
semilogy(x,y,’*-’)
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We need first guess values for all three parameters.

% first guess: baseline 0.2, ini pop 0.2,
% specific growth rate 0.2 (doubling
% in five days)
ain = [0.2 0.2 0.2];
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% plot initial guess model on top of your data
figure
subplot(1,2,1)
plot(x,y,’*-’)
hold on
plot(x,modfunc1(x,ain),’k’,’LineWidth’,3)
%
subplot(1,2,2)
semilogy(x,y,’*-’)
hold on
semilogy(x,modfunc1(x,ain),’k’,’LineWidth’,3)
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% NOW FIT to model function
% a1 + a2*exp(a3*t)
[f,a,kvg,iter,corp,covp,covr,stdresid,Z,r2] = ...

nlleasqr(x,y,ain,’modfunc1’);
% a is your optimal parameter vector
% let’s see how much better it a does:
figure
subplot(1,2,1)
plot(x,y,’*-’)
hold on
plot(x,modfunc1(x,ain),’k’,’LineWidth’,3)
plot(x,modfunc1(x,a),’r’,’LineWidth’,3)
%
subplot(1,2,2)
semilogy(x,y,’*-’)
hold on
semilogy(x,modfunc1(x,ain),’k’,’LineWidth’,3)
semilogy(x,modfunc1(x,a),’r’,’LineWidth’,3)
legend(’data’,’first guess’,’optimized model’)
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% kvg: flag to say whether convergence was
% achieved before the routine gave up
% iter: number of iterations that was used
% covp: covariance matrix of the coefficients
% (square roots of diagonal elements are
% uncertainties (sigmas) of coefficients)
% r2: overall correlation coefficient

coefficients = a’
sigmas = sqrt(diag(covp))’
R2 = r2

% coefficients = 0.6025 0.0733 0.3995
% sigmas = 0.1506 0.0255 0.0293
% R2 = 0.7862

7.17

Given:

% coefficients = 0.6025 0.0733 0.3995
% sigmas = 0.1506 0.0255 0.0293
% R2 = 0.7862

µ = 0.40±0.03 per day

78.6% of the variability in the data is explained by our model.

What about P1 and P2? Do we really need P1?

P = P1 +P2 exp(µt)

Redo the fit with modified function without P1 – How would our function look like?

P = P0 exp(µt)
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