
Lab 11
Finite Difference Methods
Handout – print version of Lecture on Marine Modelling April 1, 2019

Katja Fennel, Oceanography, Dalhousie University

11.1

1 Outline

Outline
Plan for today:

• Finite Difference Approximation of N and P in a bottle using “Euler Forward” scheme (implicit
vs. explicit)

• Finite Difference Approximation of tritium in a pipe using “FTCS” scheme
• Finite Difference Approximation of advection of a perturbation using “Upwind” scheme

11.2

2 N and P in a bottle

N and P in a bottle
Phytoplankton culture, P [mmol N/m3], in a bottle with nutrient, N [mmol N/m3], and you know

that uptake occurs according to Michaelis-Menten kinetics; you also know the uptake parameters
approximately.

dP
dt

= µmax
N

kN +N
P− rP

dN
dt

= −µmax
N

kN +N
P+ rP

Recipe: replace dP
dt by ∆P

∆t and dN
dt by ∆N

∆t 11.3

Conventions:
We want to solve for discrete time steps, ti between t0 and tend :

tn = t0 +n×∆t (n = 0, · · · ,N)

Refer to N,P at ti as Ni,Pi.
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11.4

"Euler forward"

Pn+1 −Pn

∆t
= µmax

Nn

kN +Nn Pn − rPn

Nn+1 −Nn

∆t
= −µmax

Nn

kN +Nn Pn + rPn

and rearranging yields:

Pn+1 = Pn +∆t (µmax
Nn

kN +Nn Pn − rPn)

Nn+1 = Nn +∆t (−µmax
Nn

kN +Nn Pn + rPn)

11.5

N and P in a bottle
Follow along script NP_bottle.m.

% 1.) set constants
dt = 0.1; % time step (in days)
k_N = 0.75; % half sat. const. of N (in muM)
mu_max = 1.2; % maximum growth rate (in days-1)
r = 0.1; % respiration rate (in days-1)
n_max = 100; % maximum number of timesteps

% 2.) initialize state variables N and P
% (and time -- only for plotting purposes)
N = zeros(1,n_max);
P = zeros(1,n_max);
t = zeros(1,n_max);
N(1) = 5.0; % in muM; N at t0
P(1) = 0.1; % in muM; P at t0
t(1) = 0; % in days; t0

11.6

% 3.) calculate numerical solution from t1 to t_end
for n = 2:n_max

t(n) = t(n-1)+dt;
uptake = mu_max*N(n-1)/(k_N+N(n-1));
P(n) = P(n-1) + dt*( uptake - r)*P(n-1);
N(n) = N(n-1) + dt*(-uptake + r)*P(n-1);

end
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% 4.) plot solution
hFig = figure(1);
hp = plot(t,N,’r.:’,t,P,’g.:’);
set(hp,’MarkerSize’,16)
set(gca,’FontSize’,16)
xlabel(’time (day)’)
ylabel(’concentration of N and P (muM)’)
legend(’N’,’P’, ’Location’, ’best’)

11.7

11.8

So far we have used a time step of 0.1 d.

Now increase time step to 0.4 d and see what happens. 11.9

11.10

Pn+1 = Pn +∆t (µmax
Nn

kN +Nn Pn − rPn)

Nn+1 = Nn +∆t (−µmax
Nn

kN +Nn Pn + rPn)
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Note that only concentrations from ”previous” time point n are used to arrive at ”next” time point
(n+1).

Cn+1 = f (Cn) ”explicit scheme”

Think about the implications in terms of ”tangent on the curve” or ”control volume”.

Wouldn’t it be more ”accurate” to allow C to change over the time period ∆t?

Cn+1 = f (Cn,Cn+1) ”implicit scheme”

11.11

Cn+1 = f (Cn,Cn+1) ”implicit scheme”

May seem tricky, but is tractable.

Leads to a set of simultaneous equations that need to be solved for each time step (not bad in one
dimension, but gets expensive for higher spatial dimensions).

Example for nutrient uptake:

dN
dt

= −µ
N

k+N
P

Nn+1 −Nn

∆t
= −µ

Nn+1

k+Nn Pn

11.12

Nn+1 =
Nn

1+ µ∆tPn

k+Nn

A non-negative number is divided by a positive number. This scheme is positive definite.

See script NP_bottle_impl.m. 11.13

11.14

Key change to make the scheme implicit:
Explicit:

for n = 2:n_max
t(n) = t(n-1)+dt;
uptake = mu_max*N(n-1)/(k_N+N(n-1));
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P(n) = P(n-1) + dt*uptake*P(n-1);
N(n) = N(n-1) - dt*uptake*P(n-1);

end

Implicit:

for n = 2:n_max
t(n) = t(n-1)+dt;
cff = mu_max*dt*P(n-1)/(k_N+N(n-1));
N(n) = N(n-1)/(1+cff);
P(n) = P(n-1) + cff*N(n);

end
11.15

3 Tritium Example

FTCS example: Tritium in a pipe

• Pipe with water flowing down and mixing.
• Water enters at the surface.
• Imagine pipe as streamline in subtropical gyre.

∂C
∂ t

= −u
∂C
∂ t

+K
∂ 2C
∂ t2 −λC

u = 0.01 ms−1

K = 1000 m2s−1

λ =
1

18
yr−1

∆x = 50,000 m (assume total length 12,000 km)
∆t = 200,000 s (2.5 days)

11.16

In discrete terms:

Cn+1
i =Cn

i −
u∆t
2∆x

(Cn
i+1 −Cn

i−1)+
K∆t
(∆x)2 (C

n
i−1 +Cn

i+1 −2Cn
i )−∆tλCn

i

or
Cn+1

i = w−Cn
i−1 +w0Cn

i +w+Cn
i+1

where

w− =
c
2
+d

w0 = 1−∆tλ −2d

w+ = − c
2
+d

See script pipe1.m. 11.17

K = 1000 m2s−1
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11.18

Note the maximum in tritium concentration (the green line corresponds to year 1972) and how it
moves down the pipe.

You may wonder to what degree the maximum value depends on our choice of values for the
diffusivity K. The next figure shows results for a larger value of K.

Adding more diffusion: K = 5000 m2s−1

11.19

Even more: K = 8000 m2s−1 Now unstable!
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11.20

4 Propagation of a perturbation

“Upwind scheme”
Consider a purely advective, one-dimensional system:

∂C
∂ t

=−u
∂C
∂x

Using FTCS would result in:

Cn+1
i =Cn

i −
c
2
(
Cn

i+1 −Cn
i−1

)
with: c =

u∆t
∆x

Cn
i+1 implies that for u > 0, downstream information are used to calculate upstream results for next

time step.
Therefore, we choose what information are used depending on the direction of the flow (i.e. the

sign of u):

u > 0: −c
(
Cn

i −Cn
i−1

)
, u < 0: −c

(
Cn

i+1 −Cn
i
)

See script propagate_step.m. 11.21

tyr = 24*3600*365.25; % seconds per year
dt = 200000; % time step in seconds
ny = 5; % number of years
dx = 50000; % grid size in x-direction
nx = 500; % # of cells in x-direction
u = 0.02; % velocity in x-direction
nt = ny*tyr/dt; % # of time steps

11.22

Numerical diffusion
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11.23

Due to “numerical diffusion” the equation we actually solved looks like:

∂C
∂ t

=−u
∂C
∂x

+Kn
∂ 2C
∂x2 , with: Kn =

u∆x
2

(1− c)

If c = u ∆x
∆t = 1, the numerical diffusion vanishes.

Back to propagate_step.m.

Now try: dt = dx/u 11.24

Numerical diffusion

11.25

Recommendations
• Keep it simple.
• Don’t reinvent the wheel.
• Know your tools.
• Carry along checksums/tests.
• Test your model with idealized functions or well-known scenarios (test cases).
• Compute but recognize the scheme’s limitations.

11.26
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