ECOLOGY OF FRESHWATER FISH ISSN 0906-6691

Influence of site characteristics on fish community patterns in French reservoirs

Irz P, Laurent A, Messad S, Pronier O, Argillier C. Influence of site characteristics on fish community patterns in French reservoirs. Ecology of Freshwater Fish 2002: 11: 123–136. © Blackwell Munksgaard, 2002

Abstract – The objectives of this paper are to describe the fish assemblages in French reservoirs and to relate them to the sites' characteristics. The results of 43 fishing surveys were collected and completed with environmental descriptors. Fish assemblages differ between salmonids-dominated mountain sites and lowland ones. The latter show higher species diversity and a distinction between rheophilic- and limnophilic-type communities. This distinction can be explained by the reservoir age, location in the catchment and depth. The response of fish communities to these variables was investigated by canonical correspondence analysis. It shows that rheophilic species are typically abundant in upper basin, deep and recently created reservoirs. The fish community response to the aging process corresponds to an addition of lowland standing waters species and an extinction of the native riverine ones. The structuring role of the sites' depth, location and age is discussed, considering their relationship with the water body trophic status.

P. Irz¹, A. Laurent², S. Messad³, O. Pronier¹, C. Argillier¹

¹Cemagref, Unité Ressources Ichtyologiques en Plans d'Eau, 361 rue J.F. Breton, BP 5095, 34033 Montpellier Cedex 1, France, ²9 rue de Verdun, 91370 Verrières le Buisson, France, ³CIRAD – EMVT, Campus international de Baillarguet, BP 5035, 34032 Montpellier Cedex 1, France.

Key words: ageing process; environmental variables; fish community; France; reservoir

Pascal Irz, Cemagref, Unité Ressources Ichtyologiques en Plans d'Eau, 361 rue J.F. Breton, BP 5095, 34033 Montpellier Cedex 1, France; Tel.: +33 4 67 04 33 90, fax: +33 4 67 63 57 95; e-mail: pascal.irz@cemagref.fr

Accepted for publication January 4, 2002

Un resumen en español se incluye detrás del texto principal de este artículo.

Introduction

Due to its geological and climatic history, the French territory has few lakes. The construction of dams in the past decades considerably increased the potential fish yield from freshwater bodies. These environments now sustain recreational fisheries which locally represent an important source of revenue in rural regions. However, the management of these fisheries, based on stocking and species introductions, is seldom efficient (Argillier et al. 2002) due to insufficient knowledge of these systems functioning. Yet few studies have investigated the relationship between European reservoir fish communities and site characteristics. The purposes of the present paper are to investigate the patterns of fish communities in French reservoirs and to identify the parameters structuring them. This requires a wide-scale community-level approach in order to detect general trends that cannot be assessed either by case

studies or by species focused works (Tonn & Magnuson 1983).

The site \rightarrow reach \rightarrow catchment hierarchy proposed for rivers (Imhof et al. 1996) helps define the different scales of interactions governing freshwater systems. The dependence of riverine fish assemblages upon the catchment, natural and human features is now established (Marsh-Matthews & Matthews 2000). Lake fish fauna follows similar patterns (Jackson & Harvey 1989). Fish habitat characteristics also depend, at the lake scale, on its morphometry (Hondzo & Stefan 1996), macrophyte cover (Eadie & Keast 1984) and internal biochemical processes (Matthews 1998). The presence of deep areas favors the development of a pelagic fish community (Stefan et al. 1995), whereas the lake shoreline features condition the type of habitat available for littoral species (Eadie & Keast 1984; Mandrak 1995). Despite their apparent similarities, reservoirs cannot be considered as natural lakes due to

numerous functional differences. Wetzel (1990) provides a comparative overview of how these systems function. The specificity of reservoirs essentially originates in their location in the catchment area with low hydraulic residence time and high organic, particulate and nutrient input loads. Dam operation also generates irregularly pulsed level fluctuations and water movements. These conditions lead to severe pressure on the living communities.

Major efforts have to be made to collect important datasets so that general trends in fish associations can be detected and related to the water bodies descriptors. This type of work was therefore carried out in few areas of the world and most of the cited literature originates from northern America. However, Godinho et al. (1998) showed the preponderance of longitudinal variables (elevation and temperature) and their correlates (rainfall) in structuring fish communities from Portuguese reservoirs. Similar observations were made earlier on riverine systems (Huet 1949; Illies & Botosaneanu 1963). The River Continuum Concept (Vannote et al. 1980) provides an energy-based framework to the biota distribution. Typically, the fish species richness increases downstream the river course (Oberdorff et al. 1993), resulting in a combination of zonation and downstream addition of species (Rahel & Hubert 1991). These similarities suggest that the processes governing reservoir fish communities could be midway between those occurring in lakes, as a result of an isolation limiting immigration possibilities (Magnuson et al. 1998) and the riverine continuity.

Materials and methods

The dataset

The dataset pools the information collected over 30 years for the needs of case studies. The sources are fully listed in Pronier (2000). Most of the 43 study sites are located in south-eastern France (Fig. 1), where the landscape is favorable to hydroelectric power generation. The main characteristics of these artificial lakes are summarized in Table 1. They represent a variety of environmental conditions (Table 2).

Ichtyological data were collected during either impoundment draining for dam investigation or gillnetting surveys. These surveys were carried out using two different sampling schemes. The first one is mostly empirical, relying on the setting of horizontal gillnet series overnight with knotto-knot mesh sizes ranging from 10 to 60 mm in geometrical progression. The sampling sites are

Fig. 1. Location of the 43 study sites on the French hydrographic network. The site numbers refer to Table 1.

chosen so that the whole water column may be prospected and to cover most of the habitats diversity. The second methodology uses vertical gillnet series in the deep areas, whereas the littoral zone is sampled with multimesh gillnets. The nets are then set for approximately 24 h. These two methods proved to be equally efficient in terms of accuracy on species diversity and show overall similar distributions on the relative abundance of species (Irz 1998). The efficiency of both gillnetting methods was successfully compared with a total census of the standing stock on the occasion of the total draining of La Raviège and Treignac reservoirs (unpublished data).

From the overall 37 species present in the samples, only 22 were common enough to be kept for the analysis. The species that were omitted were either sparse (less than five occurrences) or not properly sampled by gillnetting. Some related species with similar habitat requirement were pooled into a single group (Table 3). The numerical relative abundance (RA) of each species was calculated as the ratio of the number of individuals per species versus the number of fish caught during the survey. These abundances were then encoded into three categories corresponding to the absence, low abundance, and high abundance of the species. The cut-off level between low and high abundances is the median relative abundance.

Environmental descriptors were chosen among the parameters available in the database. They were selected from the existing bibliography for their relevance in structuring fish communities.

Fish communities in French reservoirs

Table 1. Main characteristics of the studied reservoirs. Each reservoir is coded with three letters corresponding to its name and a number corresponding to a French administrative department.

1 BAS06 Basto Coastal south 24 2341 59 2 CAR06 Carbon Coastal south 6 2179 5 3 FOU06 Fourcat Coastal south 4.5 2165 2.6 4 LLS06 Lac long sup. Coastal south 12 2111 6.5 5 LM006 La Muta Coastal south 12 2214 5 6 NOI06 Noir Coastal south 14 2150 2.5 8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 12 1000 4.5 10 ES655 Escoubous Garonne 180 1320 4.5 12 CAS04" Castilon Rhône 70 790 22.8 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Chastang	Map number	Code	Name	River basin	Area (ha)	Altitude (m)	Mean depth (m)
2 CAR06 Carbon Coastal south 6 2179 5 3 FOU06 Fourcat Coastal south 4.5 2165 2.6 4 LLS06 Lac long sup. Coastal south 12 2111 6.5 5 LM006 La Muta Coastal south 11 2274 5 6 N0106 Noir Coastal south 14 2150 2.5 8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 118 2161 45 10 ESC65 Escoubous Garonne 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Chastang Gronne 180 1320 45.5 15 CH004 Chaudanne	1	BAS06	Basto	Coastal south	24	2341	5.9
3 FOU06 Fourcat Coastal south 4.5 2165 2.6 4 LLS06 Lac long sup. Coastal south 12 2111 6.5 5 LM006 Noir Coastal south 18 2274 5 6 N0106 Noir Coastal south 14 2150 2.5 8 VER06 Vert Coastal south 14 2150 2.5 8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 18 2161 45 10 ESC65 Escoubous Garonne 180 132 0.45 12 CAS04 ^a Castillon Rhône 70 790 22.8 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée <t< td=""><td>2</td><td>CAR06</td><td>Carbon</td><td>Coastal south</td><td>6</td><td>2179</td><td>5</td></t<>	2	CAR06	Carbon	Coastal south	6	2179	5
4 LLS06 Lac long sup. Coastal south 12 2111 6.5 5 LM006 La Muta Coastal south 8 2278 5 6 N0106 Noir Coastal south 11 2278 4.7 7 TRE06 Trécolpas Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 118 2161 45 10 ESC65 Escoubous Garonne 12 1000 4.5 12 CAS04 ^a Castilion Rhône 450 880 33.1 13 CHA48 Chastang Dordogne 538 262 34.7 14 CHA48 Charapal Garonne 180 1220 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 280 290 16 20 ESP04 Esparron	3	F0U06	Fourcat	Coastal south	4.5	2165	2.6
5 LM006 La Muta Coastal south 8 2274 5 6 N0106 Noir Coastal south 11 2278 4.7 7 TRE06 Trécolpas Coastal south 14 2150 2.5 8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 12 2235 3.5 11 ARM48 Mas d/Arman Loire 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal anorth 44 160 2.5 18 DEV07 Devesset <td< td=""><td>4</td><td>LLS06</td><td>Lac long sup.</td><td>Coastal south</td><td>12</td><td>2111</td><td>6.5</td></td<>	4	LLS06	Lac long sup.	Coastal south	12	2111	6.5
6 N0106 Noir Coastal south 11 2278 4.7 7 TRE06 Trécolpas Coastal south 1.4 2150 2.5 8 VER06 Vert Coastal south 1.5 2221 7.1 9 CDL65 Cap de long Garonne 12 2235 3.5 11 ARM48 Mas d'Arman Loire 12 100 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CH419 Chatang Dordogne 538 262 34.7 14 CH484 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset <td< td=""><td>5</td><td>LM006</td><td>La Muta</td><td>Coastal south</td><td>8</td><td>2274</td><td>5</td></td<>	5	LM006	La Muta	Coastal south	8	2274	5
7 TRE06 Trécolpas Coastal south 1.4 2150 2.5 8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 118 2161 45 10 ESC65 Escoubous Garonne 12 2235 3.5 11 ARM48 Mas d'Arman Loire 12 1000 4.5 12 CAS04 ⁴¹ Castillon Rhône 450 880 331 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charyal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 657 490 18 24 MON38 Montyat Maury	6	N0I06	Noir	Coastal south	11	2278	4.7
8 VER06 Vert Coastal south 15 2221 7.1 9 CDL65 Cap de long Garonne 118 2161 45 10 ESC65 Escoubous Garonne 2 2235 3.5 11 ARM48 Mas d'Arman Loire 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 C0U12 Couesque Garonne 260 290 216 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 107 4.74 19 EGU36 Eguzon Loire	7	TRE06	Trécolpas	Coastal south	1.4	2150	2.5
9 CDL65 Cap de long Garonne 118 2161 45 10 ESC65 Escoubous Garonne 2 2235 3.5 11 ARM48 Mas d'Arman Loire 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 C0U12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 330 360 24.24 21 GRA42 ^a Grangent Loire </td <td>8</td> <td>VER06</td> <td>Vert</td> <td>Coastal south</td> <td>15</td> <td>2221</td> <td>7.1</td>	8	VER06	Vert	Coastal south	15	2221	7.1
10 ESC65 Escoubous Garonne 2 2235 3.5 11 ARM48 Mas d'Arman Loire 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 365 420 15.7 21 GRA42 ^a Grangent Loire 365 400 18 22 MAU12 Maury Garonne	9	CDL65	Cap de long	Garonne	118	2161	45
11 ARM48 Mas d'Arman Loire 12 1000 4.5 12 CAS04 ^a Castillon Rhône 450 880 331 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 418 25 NAU48 Naussac Loire<	10	ESC65	Escoubous	Garonne	2	2235	3.5
12 CAS04 ^a Castillon Rhône 450 880 33.1 13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 C0U12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 585 400 18 24 MON38 Monteynard Rhône	11	ARM48	Mas d'Arman	Loire	12	1000	4.5
13 CHA19 Chastang Dordogne 538 262 34.7 14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 400 18 24 MON11 Montbel Garonne 160 588 20.6 23 MON11 Montbel Garonne 150 1000 18 24 MON38 Monteynard Rhône	12	CAS04 ^a	Castillon	Rhône	450	880	33.1
14 CHA48 Charpal Garonne 180 1320 4.5 15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparon Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 160 588 20.6 23 MON11 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Sei	13	CHA19	Chastang	Dordogne	538	262	34.7
15 CH004 Chaudanne Rhône 70 790 22.8 16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine	14	CHA48	Charpal	Garonne	180	1320	4.5
16 COU12 Couesque Garonne 260 290 21.6 17 DAT14 Dathée Coastal north 44 160 2.5 18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 303 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 160 588 20.6 23 MON11 Montbel Garonne 555 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Gar	15	CH004	Chaudanne	Rhône	70	790	22.8
17DAT14DathéeCoastal north441602.518DEV07DevessetRhône5010744.7419EGU36EguzonLoire2702021620ESP04EsparronRhône33036024.2421GRA42 ^a GrangentLoire36542015.722MAU12MauryGaronne16058820.623MON11MontbelGaronne5854001824MON38MonteynardRhône65749041.8725NAU48NaussacLoire105010001826OSP2AL'OspédaleCoastal south429496.827PAN58PannecièreSeine52032415.8628PAR12PareloupGaronne19072010.830QUI04 ^a QuinsonRhône1914042031RAB61RabodangesCoastal south3741471634SCR04 ^a Saint-CassienCoastal south3741471634SCR04 ^a Saint-PardouxLoire330360735SMA07Saint-PardouxLoire330360736SPA87Saint-PardouxLoire330360737SPE81 ^a Saint-PeyresGaronne21167016.4338SP005Serre-Po	16	COU12	Couesque	Garonne	260	290	21.6
18 DEV07 Devesset Rhône 50 1074 4.74 19 EGU36 Eguzon Loire 270 202 16 20 ESP04 Esparron Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 160 588 20.6 23 MON11 Montbel Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal south	17	DAT14	Dathée	Coastal north	44	160	2.5
19EGU36EguzonLoire2702021620ESP04EsparronRhône33036024.2421GRA42 ^a GrangentLoire36542015.722MAU12MauryGaronne16058820.623MON11MontbelGaronne5854001824MON38MonteynardRhône65749041.8725NAU48NaussacLoire105010001826OSP2AL'OspédaleCoastal south429496.827PAN58PannecièreSeine52032415.8628PAR12PareloupGaronne126080512.529PDS12Pont de SalarsGaronne19072010.830QUI04 ^a QuinsonRhône1914042031RAB61RabodangesCoastal south3741471634SCR04 ^a Saint-CroixRhône21824775035SMA07Saint-MartialRhône13830536SPA87Saint-PardouxLoire330360737SPE81 ^a Saint-PeyresGaronne21167016.4338SP005Serre-PonçonRhône320078037.539T0L2ATollaCoastal south1155603041VF008Vielles Fo	18	DEV07	Devesset	Rhône	50	1074	4.74
20 ESP04 Esparron Rhône 330 360 24.24 21 GRA42 ^a Grangent Loire 365 420 15.7 22 MAU12 Maury Garonne 160 588 20.6 23 MON11 Montbel Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal north 97 125 4.64 32 RAV34 La Raviège G	19	EGU36	Eauzon	Loire	270	202	16
21GRA42aGrangentLoire36542015.722MAU12MauryGaronne16058820.623MON11MontbelGaronne5854001824MON38MonteynardRhône65749041.8725NAU48NaussacLoire105010001826OSP2AL'OspédaleCoastal south429496.827PAN58PannecièreSeine52032415.8628PAR12PareloupGaronne126080512.529PDS12Pont de SalarsGaronne19072010.830QUI04 ^a QuinsonRhône1914042031RAB61RabodangesCoastal north971254.6432RAV34La RaviègeGaronne43966210.233SCA83Saint-CroixRhône21824775035SMA07Saint-MartialRhône13830536SPA87Saint-PardouxLoire330360737SPE81 ^a Saint-PeyresGaronne21167016.4338SP005Serre-PonçonRhône320078037.539TOL2ATollaCoastal south1155603041VF008Vielles ForgesMeuse1363203.342VilL42V	20	ESP04	Esparron	Rhône	330	360	24.24
22 MAU12 Maury Garonne 160 588 206 23 MON11 Montbel Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal north 97 125 4.64 32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Pardoux <td>21</td> <td>GRA42^a</td> <td>Grangent</td> <td>Loire</td> <td>365</td> <td>420</td> <td>15.7</td>	21	GRA42 ^a	Grangent	Loire	365	420	15.7
23 MON11 Montbel Garonne 585 400 18 24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal south 374 147 16 34 SCR04 ^a Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Pardoux Loire 330 360 7 35 SMA07 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Pe	22	MAU12	Maury	Garonne	160	588	20.6
24 MON38 Monteynard Rhône 657 490 41.87 25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal north 97 125 4.64 32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Croix Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Pey	23	MON11	Montbel	Garonne	585	400	18
25 NAU48 Naussac Loire 1050 1000 18 26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 190 720 10.8 29 PDS12 Pont de Salars Garonne 191 404 20 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal south 374 147 16 32 RAV34 La Raviège Garonne 2182 477 50 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Croix Rhône 2182 477 50 35 SMA07 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint	24	MON38	Monteynard	Bhône	657	490	41.87
26 OSP2A L'Ospédale Coastal south 42 949 6.8 27 PAN58 Pannecière Seine 520 324 15.86 28 PAR12 Pareloup Garonne 1260 805 12.5 29 PDS12 Pont de Salars Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal south 97 125 4.64 32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Croix Rhône 2182 477 50 35 SMA07 Saint-Martial Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a <t< td=""><td>25</td><td>NAU48</td><td>Naussac</td><td>Loire</td><td>1050</td><td>1000</td><td>18</td></t<>	25	NAU48	Naussac	Loire	1050	1000	18
27PAN58PannecièreSeine52032415.8628PAR12PareloupGaronne126080512.529PDS12Pont de SalarsGaronne19072010.830QUI04 ^a QuinsonRhône1914042031RAB61RabodangesCoastal north971254.6432RAV34La RaviègeGaronne43966210.233SCA83Saint-CassienCoastal south3741471634SCR04 ^a Sainte-CroixRhône21824775035SMA07Saint-MartialRhône13830536SPA87Saint-PardouxLoire330360737SPE81 ^a Saint-PeyresGaronne21167016.4338SP005Serre-PonçonRhône320078037.539TOL2ATollaCoastal south1155603040TRE19TreignacDordogne1015137.441VF008Vielles ForgesMeuse1363203.342VIL42VillerestLoire8003162243V0U30 ^a VourlansBhône160042937.8	26	0SP2A	L'Ospédale	Coastal south	42	949	6.8
28 PAR12 Pareloup Garonne 1260 805 12.5 29 PDS12 Pont de Salars Garonne 190 720 10.8 30 QUI04 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal north 97 125 4.64 32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Sainte-Croix Rhône 2182 477 50 35 SMA07 Saint-Martial Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Peyres Garonne 211 670 16.43 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 TOL2A Tolla <td>27</td> <td>PAN58</td> <td>Pannecière</td> <td>Seine</td> <td>520</td> <td>324</td> <td>15.86</td>	27	PAN58	Pannecière	Seine	520	324	15.86
29 PDS12 Pont de Salars Garonne 190 720 10.8 30 QUIO4 ^a Quinson Rhône 191 404 20 31 RAB61 Rabodanges Coastal north 97 125 4.64 32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Sainte-Croix Rhône 2182 477 50 35 SMA07 Saint-Martial Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Peyres Garonne 211 670 16.43 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 TOL2A Tolla Coastal south 115 560 30 40 TRE19	28	PAR12	Pareloup	Garonne	1260	805	12.5
1000000000000000000000000000000000000	29	PDS12	Pont de Salars	Garonne	190	720	10.8
Standard Anisola <	30	01104 ^a	Quinson	Bhône	191	404	20
32 RAV34 La Raviège Garonne 439 662 10.2 33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Saint-Croix Rhône 2182 477 50 35 SMA07 Saint-Martial Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Peyres Garonne 211 670 16.43 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 TOL2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42	31	RAB61	Babodanges	Coastal north	97	125	464
33 SCA83 Saint-Cassien Coastal south 374 147 16 34 SCR04 ^a Sainte-Croix Rhône 2182 477 50 35 SMA07 Saint-Martial Rhône 13 830 5 36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Peyres Garonne 211 670 1643 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 TOL2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vourlans Brône 1600 429 37.8	32	BAV34	La Baviège	Garonne	439	662	10.2
34 SCR04 ^a Sainte-Croix Rhône 2182 477 50 35 SMA07 Sainte-Croix Rhône 13 830 5 36 SPA87 Sainte-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Pardoux Loire 3200 780 37.5 39 T0L2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V0130 ^a Vieudans Brône 1600 429 37.8	33	SCA83	Saint-Cassien	Coastal south	374	147	16
Similar Stanto Sta	34	SCR04 ^a	Sainte-Croix	Bhône	2182	477	50
36 SPA87 Saint-Pardoux Loire 330 360 7 37 SPE81 ^a Saint-Peyres Garonne 211 670 16.43 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 T0L2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vouglaps Bhône 1600 429 37.8	35	SMA07	Saint-Martial	Bhône	13	830	5
37 SPE81 ^a Saint-Peyres Garonne 211 670 16.43 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 T0L2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vouglans Bhône 1600 429 37.8	36	SPA87	Saint-Pardoux	Loire	330	360	7
SP005 Serre-Ponçon Rhône 3200 780 37.5 38 SP005 Serre-Ponçon Rhône 3200 780 37.5 39 T0L2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vouglaps Bhône 1600 429 37.8	37	SPE81 ^a	Saint-Peyres	Garonne	211	670	16.43
39 TOL2A Tolla Coastal south 115 560 30 40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 VOU30 ^a Vouglans Bhône 1600 429 37.8	38	SP005	Serre-Poncon	Bhône	3200	780	37.5
40 TRE19 Treignac Dordogne 101 513 7.4 41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V/01/30 ^a Vouglans Bhône 1600 429 37.8	30		Tolla	Coastal south	115	560	30
41 VF008 Vielles Forges Meuse 136 320 3.3 42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vouldans Bhône 1600 429 37.8	40	TRF10	Treignac	Dordogne	101	513	74
42 VIL42 Villerest Loire 800 316 22 43 V01/30 ^a Vouldans Bhône 1600 420 37.8	41		Vielles Forges	Meuse	126	320	7. 4 2.2
τζ νιμτζ νιμαίσοι μομο 000 310 ζζ 43 \/Ωμίζα ^a \/ομαίαρο Rhône 16ΩΩ 420 27.8	/12 /12	VI 000	Viclics I Viyes	I oiro	800	316	0.0 22
	43		Vouglang	Rhône	1600	429	37.8

^aSampled twice.

Table 2. Summary of the environmental characteristics of the studied reservoirs.

Parameter	Mean	SD	Range
Altitude above sea level (m)	947	753	125–2341
Distance to source (km)	36	47	0–177
Catchment area (km ²)	784	1435	1–6520
Lake area (ha)	396	632	1-3200
SLDF ^a	3.20	1.87	1.04-8.50
Perimeter (km)	22	23	0.1-107.0
Water level range (m)	12	15	0–60
Mean depth (m)	16	13	3–50
Reservoir age (years)	35	31	4–71

^aCalculated as: $/\sqrt{4\pi \times \text{surface}}$.

Only long-term stable parameters were taken into account in order to provide a secondary source of data when the database was incomplete. This includes large-scale as well as local parameters (Table 2). The large-scale parameters, related to the position of the reservoirs in the watershed, were measured from 1/50 000th to 1/1 000 000th digitized topographical maps using Autocad[®] software. The lakes' area and perimeter were measured on 1/25 000th maps. These two parameters allowed to calculate the shoreline development factor (SLDF) characterizing the reservoir shape and ranging from 1 (round lake) to over 10 when the perimeter is very long when

Common name	Group code	Species	Frequency (%)	Average RA (%)	Average RA when present (%)
Barbel	BAR	Barbus barbus	18	1.0	5.3
Black bullhead ^a	BBH	Ictalurus melas	13	1.4	11.1
Bleak	BLK	Alburnus alburnus	36	2.9	8.0
Bream	BRE	Abramis brama Blicca bioerkna	44	5.3	12.1
Brown trout	BWT	Salmo trutta fario S. trutta lacustris	64	14.7	23.0
Common carp ^a	CAR	Cyprinus carpio	49	0.8	1.6
Chub	CHU	Leuciscus cephalus	54	2.8	5.3
Dace	DAC	L. leuciscus L. leuciscus burdigalensis	18	0.3	1.5
French nase	FNS	Chondrostoma toxostoma	13	0.8	6.4
Gudgeon	GUD	Gobio gobio	33	1.6	4.8
Perch	PER	Perca fluviatilis	72	13.3	18.1
Pike	PIK	Esox lucius	54	0.4	0.7
Pikeperch ^a	PKP	Stizostedion lucioperca	33	1.3	3.9
Pumkinseed ^a	PUM	Lepomis gibbosus	18	0.2	1.2
Rainbow trout ^a	RBT	Oncorhynchus mykiss	46	10.4	22.5
Roach	ROA	Rutilus rutilus	72	34.0	47.3
Rudd	RUD	Scardinius erythrophthalmus	36	3.0	8.5
Ruffe	RUF	Gymnocephalus cernua	21	0.6	3.0
Tench	TEN	Tinca tinca	62	1.6	2.6

Table 3. Species occurrence, frequency, average numerical relative abundance (RA) and average RA excluding the absence cases.

^aIntroduced species.

the area is considered. The reservoir mean depth and the water level range, considered as the difference between the highest and lowest exploitation levels, were obtained from the dam operators.

Data processing

The relationship between fish diversity (i.e. the number of species present in each site) and several parameters was firstly studied by bivariate linear regression.

Further analyses, apart from the design of a longitudinal gradient index, were only carried out on the 33 reservoirs below 1500 m in altitude because all the fish populations in mountain lakes result from species introductions. Multivariate analysis was carried out using ADE-4 software (Thioulouse et al. 1997).

The faunal and environmental matrices were then analyzed separately. A correspondence analysis (CA) was processed on the species abundance indexes in order to identify the structure of the assemblages. The significance of betweenspecies associations were then tested using Spearman correlation.

The environmental descriptors were submitted to a standardized principal components analysis (PCA) to study the correlation between these variables. This analysis of the environmental matrix allows selection of the variables providing the best description of the reservoirs for further analysis. Careful selection avoids most of the redundancy between the selected descriptors. A second PCA was then processed on the most correlated and redundant variables. The decomposition of the site scores on the first two components of the PCA enabled clustering of the sites and thus to summarize these parameters into a single ordinal variable.

The relationship between the selected environmental descriptors and the fish communities was investigated by means of canonical correspondence analysis (CCA) (Ter Braak 1986). CCA is an ordination method that selects a series of linear combinations of environmental variables called canonical axes, which are uncorrelated. This method was designed to relate the dispersion of the species to the environmental descriptors. Therefore, it meets the needs of community ecologists and was successfully used in aquatic research (Dolman 1990; Godinho et al. 2000). It is a nonsymmetric approach that provides an assessment of the faunal inertia that is explained by environmental variables. The main result of the CCA is an ordination diagram displaying the pattern of community variation (reservoirs and species) along the environmental variables (Ter Braak 1987).

The method possesses specific properties to deal with the nonlinear relationship between the taxa abundance and environmental gradients (Ter Braak 1986). It also performs well in the case of a large set of response variables (Prodon & Lebreton 1994), even when strongly correlated (Ter Braak 1987). The limited number of data available led us to retain only four explanatory descriptors chosen in the light of the initial PCA. This choice avoids the awkward interpretation of the results when numerous descriptors are correlated and ensures a tight restriction of the species scores by the explanatory variables.

The stability and significance of CCA results was assessed by a Monte Carlo test. This test is nonparametric and is based on random permutations of the lines of the observed faunal matrix. A value of the part of faunal inertia due to the environment is calculated for each combination and allows the validation of the observed explained value with simulated values (Efron 1982).

Results

Species occurrence

The species most frequently observed in the fish assemblages are, in decreasing order of occur-

rence, perch, roach, brown trout, tench, pike and chub (Table 3). The dominant species in these assemblages are roach and perch, which indicates their aptness for reservoir environments. Some of the more widespread species, such as carp and pike, always remain at a low relative abundance.

Species diversity

Species diversity was plotted against each environmental variable which were previously logtransformed. The correlation was significant for the catchment area, reservoir area, distance to the source and mean depth (Fig. 2). The best descriptors to predict the number of species in a reservoir are the reservoir area ($R^2 = 0.67$) and its watershed area ($R^2 = 0.54$). No continuous relationship was found between fish diversity and altitude, though the average diversity significantly differ (P < 0.001) between lowland (below 1500 m; mean = 9.1 species) and mountain sites (mean = 1.8 species), which confirms that fish assemblages follow different patterns below and over the 1500 m elevation threshold.

Fig. 2. Regression scatterplots of species diversity vs. the statistically significant variables.

Fish assemblages below 1500 m

The CA first axis clearly discriminates two types of fish communities (Fig. 3). The first one is composed of gudgeon, barbel, brown trout, French nase, chub and rainbow trout. These species are rheophilic and could originate from the riverine assemblages before the construction of the dams. The second group stretched along the second axis can be extended to the 13 other species, among which roach, perch, rudd and pike, i.e. limnophilic species are the most frequent. The opposition between tench, carp and pikeperch on one side, bream and bleak on the other side is difficult to interpret at this stage.

The between-species correlations confirm these results (Table 4). It shows the strong correlation among the first group of species, whereas the second group displays fewer significant correlations. The corresponding species represent an opposition to the first group but cannot be interpreted as a real assemblage due to their low cooccurrence rate.

Environmental descriptors of lowland sites

The PCA carried out on the environmental parameters provides an overview of their organization (Fig. 4). The correlation matrix is given in Table 5. Depth, water level range, perimeter and reservoir area, all site-scale characteristics, appear correlated. These parameters represent the size of the lake. The catchment area and the distance to the source are positively correlated, and opposed to the altitude. This opposition summarizes the location of the sites in the catchment. SLDF is simultaneously correlated to site-scale descriptors and to the location in the catchment. Mountain water bodies are close to the river source and typically round-shaped (low SLDF), with a small catchment area. These parameters increase for downstream sites. Reservoir age is independent from all the other parameters.

Design of a longitudinal gradient index

Considering the strong correlations cited previously and the need to limit the number of explanatory variables for the CCA, a single longitudinal gradient index was searched for by means of PCA. The input parameters, altitude, distance to the river source, and catchment area, describe the location of the reservoirs on the hydrographic network.

The distribution of the 43 sites on the first two dimensions of the PCA enables the construction

																		I
	BAR	BBH	BLK	BRE	BWT	CAR	CHU	DAC	FNS	GUD	PER	PIK	РКР	PUM	RBT	ROA	RUD	RUF
BBH	-0.12	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Т
BLK	0.23	0.06	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
BRE	0.06	0.37*	0.52^{**}	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
BWT	0.38^{*}	-0.18	0.09	-0.10	I	I	I	I	I	I	I	I	I	I	I	I	I	I
CAR	0.05	0.05	00.0	0.22	-0.06	I	I	I	I	I	I	I	ı	ı	I	I	I	I
CHU	0.55^{**}	-0.12	0.16	-0.06	0.56^{**}	-0.21	I	I	I	I	I	I	I	I	I	I	I	I
DAC	-0.13	0.16	0.22	0.31*	-0.08	0.01	0.03	I	I	I	I	I	I	I	I	I	I	I
FNS	0.78**	-0.02	0.08	0.07	0.29	-0.09	0.44**	0.02	I	I	I	I	I	I	I	I	I	I
GUD	0.40^{**}	-0.09	0.14	-0.14	0.51 **	-0.32^{*}	0.27	-0.26	0.36^{*}	I	I	I	I	I	I	I	I	I
PER	-0.31^{*}	-0.02	0.02	0.08	-0.36^{*}	-0.19	-0.14	0.01	-0.24	-0.32^{*}	I	I	I	I	I	I	I	I
PIK	-0.09	0.03	0.12	0.19	-0.41 **	0.28	-0.26	0.22	-0.13	-0.31^{*}	0.29	I	I	I	I	I	I	I
РКР	-0.28	0.07	0.14	0.13	-0.32^{*}	0.41**	-0.34^{*}	0.29	-0.43^{**}	-0.44^{**}	0.08	0.22	ı	ı	I	I	I	I
PUM	0.02	0.14	0.22	0.37*	0.03	0.04	0.03	0.28	0.16	-0.06	0.15	0.01	-0.01	I	I	I	I	I
RBT	0.27	000	-0.05	0.06	0.29	0.04	0.12	-0.06	0.51 **	0.29	-0.14	-0.15	-0.37*	0.32*	I	I	I	I
ROA	-0.06	0.12	0.11	0.10	-0.20	0.09	-0.24	0.26	-0.04	-0.08	-0.30^{*}	0.17	0.13	-0.10	0.08	I	I	I
RUD	-0.04	0.37*	0.07	0.28	-0.24	0.17	-0.11	-0.14	-0.08	-0.12	0.27	0.21	0.17	0.14	-0.06	-0.46^{**}	I	I
RUF	-0.25	0.14	0.16	0.34^{*}	-0.30^{*}	0.22	-0.27	0.13	-0.13	-0.06	0.29	0.19	0.24	-0.01	-0.18	0.14	-0.03	I
TEN	0.06	-0.05	-0.16	-0.16	0.23	0.36^{*}	0.05	0.02	0.13	0.01	-0.35^{*}	0.02	0.14	0.03	-0.01	-0.05	0.07	0.03
*Correla	tion is signific. ation is signifiv	ant at the 0.0 cant at the 0.0	05 level. 1.01 level.															

able 4. Spearman correlation between the species relative abundances in lowland sites.

of a longitudinal gradient index. This synthetic ordinal variable comprises five gradient classes, each corresponding to a group of reservoirs on the PCA diagram (Fig. 5). The fifth category contains all the mountain reservoirs.

The distribution of the environmental descriptors along the longitudinal gradient index is displayed in Fig.6. These boxplots reveal the meaning of this index about altitude, distance to source and catchment area that were used to construct it. It also shows the homogeneous features of high-altitude reservoirs, apart from their age. It also appears that the index is correlated to SLDF, perimeter, and reservoir area. The longitudinal distribution of the sites also corresponds to strong morphological trends that oppose large, complex-shaped lowland reservoirs to small, round-shaped mountain ones. When class 5 sites are not considered, water level range (P = 0.22) and reservoir age (P = 0.18) are independent from the index, whereas it remains negatively correlated to the mean depth (P < 0.001).

The occurrence rate of the fish species can be plotted against the gradient index (Fig. 7). This gradient provides a good explanation for the distribution of some species. Bleak and bream occur mainly in lowland sites (1–3). On the other hand, rainbow trout and brown trout are present more in the mountain sites (class 5). Some species like barbel, gudgeon, tench and French nase are obviously restricted to intermediate conditions. Roach and perch, the most widespread species in the reservoirs, are present in almost all the sites with the exception of mountain water bodies.

Ordination of fish communities restricted by environmental descriptors

Only four variables were kept for the CCA. The longitudinal gradient index is the single largescale input parameter, whereas mean depth, water level range and reservoir age characterize the water body itself. These descriptors were chosen to remove most of the redundancy in the data as well as to limit the number of explanatory variables.

A Monte Carlo test (P < 0.001, 1000 permutations) proves the significance of the analysis. It reveals that the four descriptors explain 20% of the variability within the fish assemblages (Table 6). The abundance of four species is well explained by the descriptors. Among these, barbel, French nase, and pikeperch are segregated along the first axis of the CCA biplot (Fig. 8). This axis accounts for 47% of the explained variability and can be interpreted by reservoir depth. The

Reservoir

age

Perimeter

abundance of French nase and barbel is positively correlated with this variable, whereas pikeperch populations are more abundant in shallow reservoirs. Depth is therefore the main parameter structuring the fish communities in the studied reservoirs. Along the second axis, which represents 26% of the explained variability, the longitudinal gradient is opposed to the age of the reservoir. These variables were not correlated during the previous analysis. These independent descriptors have an opposite effect on the fish assemblages. Bleak is more abundant in old and/ or lowland reservoirs, whereas rainbow trout develops in young and/or elevated ones. The age since first filling also has an effect on pikeperch which is most abundant in old water bodies. The group of rheophilic species observed in correspondence analysis (RBT, FNS, BAR, BWT, and

Distance to Catchment Reservoir Water level source Altitude area area SLDF range Mean depth
--

Table 5. Correlation matrix resulting from the PCA carried out on the environmental descriptors of 33 lowland sites.

Distance to source	1.00								
Altitude	-0.43^{*}	1.00							
Catchment area	0.85**	-0.30	1.00						
Reservoir area	0.30	0.03	0.38*	1.00					
SLDF	0.49**	-0.40^{*}	0.56**	0.16	1.00				
Water level range	0.17	-0.02	0.25	0.43*	0.42*	1.00			
Mean depth	0.55**	-0.16	0.47**	0.64**	0.30	0.65**	1.00		
Reservoir age	-0.17	0.15	-0.26	-0.20	0.10	0.19	-0.14	1.00	
Perimeter	0.41*	-0.18	0.56**	0.65**	0.80**	0.57**	0.50**	-0.05	1.00

*Correlation is significant at the 0.05 level.

**Correlation is significant at the 0.01 level.

Fish communities in French reservoirs

Fig. 5. Reservoirs scatterplot resulting from the PCA on the sites altitude, catchment area and distance to the source. The number inside each circle represents the inertia center of a class of gradient. The site numbers refer to Table 1.

Fig. 6. Boxplot representation of the geographical and morphological signification of the longitudinal gradient index.

Fig. 7. Occurrence rate of the species along the longitudinal gradient.

GUD) appears characteristic of young reservoirs. The variation in abundance of perch is partly explained by the descriptors (27% of the variability explained). Its position on the biplot suggests that it is a species of intermediate longitudinal gradient and reservoir age. Water level range does not appear to be a good structuring variable for this dataset.

Discussion

The dataset processed in the present study reveals general patterns of the fish assemblages encountered in French reservoirs. The observed taxa associations can be clustered into three types that are mountain sites, recently built lowland reservoirs, and older lowland reservoirs. The latter group is much more heterogeneous than the other two. The communities are influenced by local and regional parameters, and whereas reservoir morphology influences the abundance of particular species, large-scale descriptors tend to affect the assemblages.

The increase in species diversity with the reservoir size is coherent with the trends observed in Ontario lakes (Minns 1989) and northern Wisconsin lakes (Tonn & Magnuson 1982). This can be related to the relationship between the

Table 6. Projected inertia decomposition on a CCA subspace for the 19 species.

	Environmental subspace $(\times 10^{-3})$	Orthogonal subspace $(\times 10^{-3})$	Total inertia $(\times 10^{-3})$	Explained inertia (%)
BAR	3.98	5.41	9.39	42.38
BBH	1.06	5.22	6.27	16.86
BLK	3.31	5.99	9.30	35.57
BRE	1.63	7.52	9.15	17.8
BWT	2.16	6.88	9.04	23.93
CAR	1.14	8.30	9.44	12.05
CHU	0.80	6.35	7.15	11.19
DAC	0.59	7.03	7.62	7.7
FNS	3.82	3.91	7.73	49.43
GUD	0.37	12.73	13.10	2.82
PER	1.41	3.89	5.30	26.67
PIK	1.83	7.31	9.14	20.04
PKP	4.00	7.43	11.44	35.01
PUM	0.21	7.72	7.92	2.59
RBT	2.11	4.29	6.40	32.9
ROA	0.30	4.91	5.21	5.72

water body surface area and the heterogeneity of its habitats (Eadie & Keast 1984; Benson & Magnuson 1992). The significance of the regressions between fish diversity and catchment area, distance to the source and reservoir depth should be interpreted with care, considering the numerous correlations linking these descriptors. However, the effect of the catchment size on the fish communities can be considered indirectly through the downstream increase in nutrients loads, dissolved minerals, and conductivity. The longitudinal gradient index designed on the basis of the site location descriptors could also be regarded as a temperature, a trophic or a quality gradient. This longitudinal-based structure confirms the results of Godinho et al. (1998) on Portuguese reservoirs, although the species and sites characteristics are to a large extent different.

High-altitude rivers typically sheltered no native fish populations prior to human introductions of salmonids in the Pyrénées (Delacoste et al. 1997). This can be generalized to most mountain areas in France, and fishery legislation in such sites prohibits practices tending to sustain other fish taxa. Therefore, fish communities in mountain reservoirs are more likely to reflect human actions than biotic responses to environmental conditions.

Depth is the main parameter structuring fish communities in reservoirs below 1500 m in altitude. This observation suggests a trophic interpretation

related to the food resource availability. Deep water bodies submitted to temperate climate are seasonally stratified. These conditions are more favorable to pelagic fishes which are able to feed in open waters than to the benthivorous species then limited to the shallow littoral areas. Several biological and chemical processes have been shown to depend on the depth of the water body that was therefore included in the expression of synthetic models to assess the trophic status or to predict fish yield (Ryder et al. 1973). This interpretation of the effect of depth on fish communities is common with natural lakes, but reservoir-specific features increase the depth effect. A deep reservoir means that the dammed river had a steep slope. These intermediate riverine systems were described by Verneaux (1981) as, from upstream to downstream, brown trout, grayling (Thymallus thymallus L.) and barbel zones. French nase and barbel appear to be the species performing best in deep reservoirs, accompanied to a lesser extent by chub, bleak, rainbow trout, bream, gudgeon and brown trout, whereas pikeperch, ruffe, pike and perch are most abundant in shallow reservoirs. Furthermore the strong correlation between the reservoirs mean depth and their water level range can be considered as a general characteristics of these systems. The level fluctuations, whose effects have so far been difficult to distinguish from the effects of depth, also limit the possibilities for stable and rich benthic invertebrate and macrophytic communities to colonize the substrate. Such artificial and unpredictable conditions represent severe pressure for various functions of the fish life cycle. Most of the recorded fish species feed, at least at one development stage, on benthic invertebrates (Billard 1997). Their low abundance represent a resource gap. The absence of aquatic vegetation also considerably reduces the survival of juveniles due to the lack of shelters from predators and prevents some species to reproduce in the absence of suitable spawning habitat. The last direct impact of level variations is the risk for the eggs of shallow spawners to become emerged during lowering periods.

The CCA shows that the water body depth is a better explanatory variable of the fish community than the water level range. Nevertheless, the effects of level variations should be further investigated to draw general conclusions. A more precise description of the variations, including daily and seasonal fluctuation regimes, would provide more pertinent results than the simple annual level range.

Man-made reservoirs can be regarded as particularly interesting environments due to their youth. Their rapid evolution, in comparison to natural hydrosystems, provides valuable information on the ecological successions following a major environmental disruption. Fish communities appear sensitive to reservoirs' aging process. The fish fauna of a newly built reservoir essentially originates from the dammed river. The dominant species at that stage are either rheophilic and limited to the mouth of the tributaries or come from the river pools. Few of them are generalist enough to remain competitive in a lacustrine environment. Pelagic habitats are to a large extent unexploited as these species find better living conditions in littoral shallow areas (Fernando & Holcik 1991). In most cases, the fish stock does not increase until species adapted to standing waters are introduced. Obviously, such management practices alter the natural evolution of biotic communities. Nevertheless, our observations show that the structuring role of site characteristics is not occulted by anthropogenic actions. Indeed, as shown by Argillier et al. (2002), stocking is rather inefficient in such environments. We hypothesize that species introductions do not challenge our approach, firstly because all the sites are similarly submitted to these practices, and secondly because the success of an introduced species depends on whether it meets favorable environmental conditions or not. Therefore, the abundance of the species can be regarded as a response to habitat characteristics despite stocking and introductions.

The brutal habitat disturbance due to the construction of the dam is followed by a rapid evolution in the created environment. Some authors consider three stages in this biogeochemical evolution. A short time after filling, a 'trophic upsurge' results from the nutrients' availability from inundated soils, then productivity decreases and then stabilizes at a level controlled by the external nutrients' loads from the inflow (Popp et al. 1996). In spite of the lack of water quality data, this model does not seem to fit our observations. French reservoirs appear sensitive to progressive eutrophication, the first algal blooms occurring a few decades after initial filling (unpublished data). Fish community response to these habitat alterations is guite similar to the pattern described by Kubecka (1993) with a shift from the original riverine community to cyprinids-dominated communities with important perch populations. Such a process certainly is accelerated by species introductions. The ultimate stage is characterized by the dominance of cyprinids, particularly bleak, and pikeperch that can be considered as the typical old reservoirs predator. These species are considered to be tolerant towards water

quality and their adaptive ability allows their populations to develop in unstable environments. Communities therefore seem to reflect the eutrophication trend.

The opposite effect of reservoir age and longitudinal gradient index shows that the response of fish assemblages to the aging process is similar to a progressive slide towards downstream-type communities. This confirms the trophic interpretation of the observed taxa successions, considering a longitudinal productivity gradient as a general feature of riverine systems.

Conclusions

This work provides an original overview of the features of fish communities in French reservoirs and highlights the different types of factors structuring them. Though the investigations were limited to easily collectable descriptors of the studied reservoirs, the general patterns in the species associations can be interpreted functionally. In the absence of reference conditions due to their artificial origin, reservoir fisheries management does not include any conservation purposes. Species introductions are widespread and accelerate the successions while reservoirs age. Further research aiming at designing a model to predict the fish potential yield and species adaptability should require the collection of water quality data.

Resumen

1. El objetivo de este trabajo es describir los ensamblajes de peces de los embalses franceses y relacionarlos con las caracteristicas de las localidades. Los resultados de 43 muestreos fueron complementados con descriptores ambientales. Los ensamblajes de peces difirieron entre localidades de montaña dominadas por salmonidos y los de tierras bajas. Los embalses de montaña reflejan mas acciones humanas (repoblaciones e introducción de especies) que respuestas bioticas a las condiciones ambientales. Por debajo de los 1500 m de altitud, la diversidad de especies es mayor y se pueden distinguir comunidades reofilicas a limnofilicas. Esto puede estar relacionado con la edad, la profundidad y la localizacion geografica de la cuenca.

2. La respuesta de las comunidades a estas variables fue investigada a traves de Analisis de Correlacion Canónica. Los parámetros ambientales explicaron un 20% de la dispersión de las especies. Las comunidades estan influenciadas por parametros locales y regionales. Mientras que la morfologia del embalse determina la abundancia de algunas especies, descriptores a gran escala tienden a afectar a los ensamblajes. Las especies reofilicas son tipicamente abundantes en las cuencas superiores, profundas y en los embalses recientemente creados. La respuesta de la comunidad de peces a la edad de los embalses tiende a ser la adición de especies de aguas quietas y a la extinción de especie de río. Discutimos ademas el papel estructural de la profundidad de las localidades, la edad y la localizacion, considerando estas

relaciones con el estado trófico y su significado en términos de habitat.

Acknowledgements

We would like to thank the numerous persons and institutions who provided data for this study, Conseil Supérieur de la Pêche, Ecole Nationale d'Agronomie de Toulouse, Université Paul Sabatier Toulouse III, Institut National de la Recherche Agronomique, Université de Franche Comté and Electricité de France. This work is part of a project funded by Conseil Supérieur de la Pêche.

References

- Argillier, C., Pronier, O. & Changeux, T. 2002. Fishery management practices in French lakes. In: Cowx, I.G., ed. Management and ecology of lake and reservoir fisheries. Oxford: Blackwell Science: pp. 312–321.
- Benson, B.J. & Magnuson, J.J. 1992. Spatial heterogeneity of littoral fish assemblages in lakes: relation to species diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1493–1500.
- Billard, R. 1997. Les poissons d'eau douce des rivières de France. Paris: Delachaux & Niestlé.
- Delacoste, M., Baran, P., Lascaux, J.M., Abad, N. & Besson, J.P. 1997. Bilan des introductions de salmonidés dans les lacs et ruisseaux d'altitude des Hautes-Pyrénées. Bulletin Français de Pêche et de Pisciculture 344/345: 205–219.
- Dolman, W.B. 1990. Classification of texas reservoirs in relation to limnology and fish community associations. Transactions of the American Fisheries Society 119: 511–520.
- Eadie, J.M. & Keast, A. 1984. Resource heterogeneity and fish species diversity in lakes. Canadian Journal of Zoology 62: 1689–1695.
- Efron, B. 1982. The jacknife, the bootstrap and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics.
- Fernando, C.H. & Holcik, J. 1991. Fish in reservoirs. Internationale Revue der Gesamten Hydrobiologie 76: 149–167.
- Godinho, F.N., Ferreira, M.T. & Portugal e Castro, M.I. 1998. Fish assemblage composition in relation to environmental gradients in Portuguese reservoirs. Aquatic Living Resources 11: 325–334.
- Godinho, F.N., Ferreira, M.T. & Santos, J.M. 2000. Variation in fish community composition along an Iberian river basin from low to high discharge: relative contributions of environmental and temporal variables. Ecology of Freshwater Fish 9: 22–29.
- Hondzo, M. & Stefan, H.G. 1996. Dependence of water quality and fish habitat on lake morphometry and meteorology. Journal of Water Resources Planning and Management 122: 364–373.
- Huet, M. 1949. Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Schweizerische Zeitschrift für Hydrologie 11: 332–351.
- Illies, J. & Botosaneanu, L. 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistique. Internationale Vereinigung für Theoretishe und. Angewandte Limnologie Verhandlung 12: 1–57.
- Imhof, J.G., Fitzgibbon, J. & Annable, W.K. 1996. A hierarchical evaluation system for characterising watershed ecosystems for fish habitat. Canadian Journal of Fisheries and Aquatic Sciences 53: 312–326.

- Irz, P. 1998. Etude comparative de deux stratégies d'échantillonnage piscicole en milieu lacustre. Mémoire de DEA. Toulouse: Université Paul Sabatier.
- Jackson, D.A. & Harvey, H.H. 1989. Biogeographic associations in fish assemblages: local vs. regional processes. Ecology 70: 1472–1484.
 Kubecka, J. 1993. Succession of fish communities in
- Kubecka, J. 1993. Succession of fish communities in reservoirs of central and eastern Europe. In: Straskraba, M., Tundisi, J.G. & Duncan, A., eds. Comparative reservoir limnology and water quality management. Dortrecht: Kluwer Academic Publishers, pp. 153–168.
- Magnuson, J.J., Tonn, W.M., Banerjee, A., Toivonen, J., Sanchez, O. & Rask, M. 1998. Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79: 2941–2956.
- Mandrak, N.E. 1995. Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1462–1474.
- Marsh-Matthews, E. & Matthews, W.J. 2000. Geographic, terrestrial and aquatic factors: which most influence the structure of stream fish assemblages in the midwestern United States? Ecology of Freshwater Fish 9: 9–21.
- Matthews, W.J. 1998. Patterns in freshwater fish ecology. New York: Chapman & Hall, 616pp.
- Minns, C.K. 1989. Factors affecting fish species richness in Ontario lakes. Transactions of the American Fisheries Society 118: 533–545.
- Oberdorff, T., Guilbert, E. & Luchetta, J.C. 1993. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259: 157–167.
- Popp, A., Hoagland, K.D. & Hergenrader, G.L. 1996. Zooplankton community response to reservoir aging. Hydrobiologia 339: 13–21.
- Prodon, R. & Lebreton, J.D. 1994. Analyses multivariées des relations espèces-milieu: structure et interprétation écologique. Vie Milieu 44: 69–91.
- Pronier, O. 2000. Analyse des peuplements ichtyologiques des plans d'eau français et perspectives de gestion piscicole. Thèse de Doctorat. Toulouse: Institut National Polytechnique.

- Rahel, F.J. & Hubert, W.A. 1991. Fish assemblages and habitat gradients in a rocky mountain-great plains stream: biotic zonation and additive patterns of community change. Transactions of the American Fisheries Society 120: 319–332.
- Ryder, R.A., Kerr, S.R., Loftus, K.H. & Regier, H.A. 1973. The morphoedaphic index, a fish yield estimator – review and evaluation. Journal of the Fisheries Research Board of Canada 31: 663–688.
- Stefan, H.G., Hondzo, M., Eaton, J.G. & McCormick, J.H. 1995. Validation of a fish habitat model for lakes. Ecological Modelling 82: 211–224.
- Ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.
- Ter Braak, C.J.F. 1987. The analysis of vegetation– environment relationship by canonical correspondence analysis. Vegetation 69: 69–77.
- Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J.M. 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.
- Tonn, W.M. & Magnuson, J.J. 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149–1166.
- Tonn, W.M. & Magnuson, J.J. 1983. Community analysis in fishery management: an application with northern Wisconsin lakes. Transactions of the American Fisheries Society 112: 368–377.
- Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.
- Verneaux, J. 1981. Les poissons et la qualité des cours d'eau. Annales Scientifiques Université de Besançon Serie Biologie Animale 2: 33–41.
- Wetzel, R.G. 1990. Reservoir ecosystems: conclusions and speculations. In: Thornton, K.W., Kimmel, B.L. & Payne, F.E., eds. Reservoir limnology: ecological perspective. New York, USA: John Wiley and Sons, Inc., pp. 227–238.