

A numerical analysis of the effects of contemporary sea ice loss on Arctic primary production

Timothée Bourgeois¹, Katja Fennel¹, Benjamin Richaud¹, Xiaofan Luo², Xianmin Hu³ and Youyu Lu³

¹Department of Oceanography, Dalhousie University, Halifax, Canada ²School of Marine Science and Technology, Tianjin University, China ³Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Canada

Introduction

National Snow and Ice Data Center

Hypothesis

If Arctic sea ice cover drives primary production:

What about carbon export and burial efficiency?

Carbon export or burial / primary production

Model

- NEMO v3.6: OPA LIM v3 PISCES v2
- 75 vertical levels
- Surface forcing: Atmospheric reanalysis
- Biogeochemical conditions:
- Initial: from observation (WOA, GLODAP)
- Open boundary: same, constant
- Rivers (C, N, P, Si): GEM, GlobalNEWS2
- 5 year spin-up
- Hindcast from 1998 to 2015

Sea ice drives primary production

(annual means)

Emergence of nutrient limitation

Carbon export/burial efficiency

Arctic carbon export efficiency in literature:

- Chen et al. (2003): 26 %
- Gustafsson and Andersson (2012): 34 ± 8 %
- Roca-Martí et al. (2016): 50 ± 50 %

Conclusion

- 2012 Arctic primary production of 320 TgC/y (+ 30 % vs. 1998)
 - Lower end of previous estimates (330-630 TgC/y)
- Carbon export and burial efficiency not sensitive to the change in sea ice cover conditions between 1998 and 2012
- Up to 3 months increase in nutrient limitation duration in Eurasian shelves
- Need to dig deeper into the characteristics of nutrient limitation

Model

NEMO-v3.6 (Madec et al., 2016)

- OPA
- LIM3 (Rousset et al., 2015)
- PISCES-v2 (Aumont et al., 2015)
 - 24 variables
 - 5N 2P 2Z 3D
 - Constant C:N:P:O₂ ratio
 - Carbonate chemistry included

