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Abstract

A data assimilation technique is used with a simple but widely used marine ecosystem model to optimize poorly known
model parameters. A thorough analysis of the a posteriori errors to be expected for the estimated parameters was carried out.
The errors have been estimated by calculating the Hessian matrices for different problem formulations based on identical
twin experiments. The error analysis revealed inadequacies in the formulation of the optimization problem and insufficien-
cies of the applied data set. Modifications of the actual problem formulation, which improved the accuracy of the estimated
parameters considerably, are discussed.

The optimization procedure was applied to real measurements of nitrate and chlorophyll at the Atlantic Bermuda site. The
parameter optimization gave poor results. We suggest this to be due to features of the ecosystem that are unresolved by the
present model formulation. Our results emphasize the necessity of an error analysis to accompany any parameter
optimization study. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Within the scope of global climate studies, the
modeling community is seeking marine ecosystem
models capable of describing wide regions of the
oceans. Models should be robust and behave equally
well in different biogeochemical provinces of the
global ocean. These range from temperate and high
latitude systems, which may be viewed as a linear
food chain, to oligotrophic systems, characterized by
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high overturning rates and a food net dominated by
the microbial loop. Parameterizations appropriate to
represent these different types of ecosystems are
needed for basin-wide and global ocean models. The
parameters in marine ecosystem models are gener-
ally poorly known quantities. This is mainly due to
the fact that the model state variables are highly
integrated pools that comprise different species,
which are affected differently by biotic and abiotic
changes in their environment. The model parameters
should represent the integrated behavior of this het-
erogenic mixture of species. Furthermore, the pro-
portions of the different species contributing to the
species pool may change in time as ecosystems
respond to changes in environmental conditions.
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Thus, the model parameters are not straightforward
to define.

The parameter values are difficult to determine by
measurements. Single quantities like phytoplankton
growth rates may be found by laboratory experi-
ments. However, these values represent mostly sin-
gle species under controlled conditions and their
application to the in situ conditions is questionable.
Only until recently, the general procedure for setting
parameters of ecological models was to use corre-
sponding values from former modeling studies
andror fit the model output to observed data by
subjective tuning of the parameters. The employment
of data assimilation techniques seems an attractive
alternative, since these methods allow one to settle
poorly known model parameters objectively based
on statistical assumptions about observations of the
real system. Such a parameter estimation is done by
combining the dynamical model and measurements
of the state of the real system. The data assimilation
technique generally used within the context of pa-

Žrameter optimization is the adjoint method Lawson
et al., 1995, 1996; Schartau et al., 2000; Spitz et al.,

.1998, 2000 . A few studies employ simulated anneal-
Ž .ing Hurtt and Armstrong, 1996, 1999; Matear, 1995

Žor a non-linear optimization technique Evans, 1999;
.Fasham and Evans, 1995; Prunet et al., 1996a,b to

perform parameter optimizations. The basic idea un-
derlying these methods is to vary model parameters
until the misfit between the dynamical model and the
time-distributed data is minimized, while the model
equations are fulfilled exactly. The general procedure
of parameter estimation by the adjoint method is

Ž .discussed in detail by Evensen et al. 1998 .
Former assimilation studies demonstrate that the

optimization of ecological parameters is a difficult
task. While the feasibility of the adjoint method to
recover model parameters was shown in principle by

Židentical twin experiments Lawson et al., 1996;
.Schartau et al., 2000; Spitz et al., 1998 , the applica-

tion to real observations turned out to be problem-
Ž .atic. For instance, Fasham and Evans 1995 did not

find a parameter set that would give a good fit to the
whole observation set simultaneously, Prunet et al.
Ž .1996a found only a few model parameters to be

Ž .constrained by the data, and Spitz et al. 1998 could
not estimate the optimal model parameters when
employing real observations.

Since an optimization procedure can only provide
estimates of the parameters in question, we regard
studies of this kind as not complete without an
analysis of the errors of the optimal estimate. This
paper provides a thorough investigation of the errors
to be expected for the optimal parameter estimates.
The important problem of what aspects of the param-
eter set are difficult to determine or are not con-
strained by the available data is illuminated by an
error analysis. The estimated a posteriori errors in-
spire modifications of the problem formulation and
reveal the inadequacies in the employed data sets
and model formulation. Since the error analysis is
based on a widely used modeling approach, the
results apply to a whole class of presently used
ecological models.

The ecological model, the inverse formulation,
and the method to obtain the error estimates are
described in Section 2. The error analysis is pre-
sented and discussed in Sections 3 and 4, respec-
tively. An application of the optimization procedure
to real observations is performed in Section 5, fol-
lowed by its discussion in Section 6. The paper
concludes with Section 7.

2. Method

2.1. The ecological model

The ecosystem model employed in this study is a
simple representation of the nitrogen cycle, but nev-
ertheless a widely used approach to describe the
pelagic system of marine environments. The model
consists of four partial differential equations that
determine the dynamical evolution of the state vari-
ables: dissolved inorganic nutrients DIN, phytoplank-
ton Phy, zooplankton Zoo and detritus Det. This type
of model is also termed the NPZD-model. A
schematic of the model is given in Fig. 1. NPZD-
models are currently used in various spatial resolu-
tions ranging from vertically integrated and one-di-

Žmensional models Doney et al., 1996; Evans and
.Parslow, 1985; Fennel, 1995 to coupled three-di-

Žmensional models Fennel, 1999; Oschlies and
.Garçon, 1998, 1999; Palmer and Totterdell, 1999 .

While the conceptual structure of the ecological part
of all of these models is very similar, slight differ-
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Fig. 1. Schematic of the NPZD-model.

ences occur in the explicit mathematical formulation
of the process parameterizations. The latter are em-
pirical and thus depend to some extent on the per-
sonal choice of the modeler.

This study is based on a vertically integrated
formulation of the model, that is, the state variables
are assumed to be homogenously distributed over the
mixed layer. The evolution of the mixed layer is
calculated from prescribed daily mixed layer depths
Ž .MLD . The prescribed mixed layer depths are taken
from a simulation of the general circulation model

Ž .described by Drange 1996 . The circulation model
is a version of the Miami Isopycnic Coordinate

Ž . Ž .Ocean Model MICOM Bleck et al., 1992 employ-
ing the mixed layer parameterization of Gaspar
Ž .1988 and forced with ECMWF wind stresses, heat
fluxes and solar radiation. The positive change of the

qŽ .mixed layer depth h t determines the rate of
nutrient entrainment into the mixed layer from greater
depths. It is given by

hq t smax h t ,0 ,Ž . Ž .Ž .
dMLD

where h t s . 1Ž . Ž .
d t

The phytoplankton growth rate g depends on theP

supply of dissolved inorganic nutrients DIN accord-
ing to a linear Michaelis–Menten kinetic and on the

Ž .availability of photosynthetically active light F I .
The growth rate is given by

DIN 1 MLD
g I ,DIN sm P F I d z ,Ž . Ž .HP P k qDIN MLD 0N

2Ž .

where m is the maximum phytoplankton growthP

rate, k the half-saturation concentration for nutrientN

uptake and I the depth dependent radiation. The
Ž .photosynthesis to light relationship PI-curve is de-

Ž .termined following Evans and Parslow 1985

aPparI
F I s . 3Ž . Ž .

2 2 2 2(m qa par IP

Here a represents the initial slope of the PI-curve
and par is a constant determining the fraction of
incident light that is available for photosynthesis.
The phytoplankton loss terms comprise grazing by
zooplankton g and linear metabolical losses due toZ

the constant respiration and mortality rates l andPN

l , respectively. The zooplankton grazing is repre-PD

sented by a squared Michaelis–Menten response

Phy 2

g sm , 4Ž .Z Z 2k qPhyP

where m is the maximum grazing rate and k theZ P

half-saturation concentration for phytoplankton in-
gestion. Zooplankton exudation is described by a
constant rate l while zooplankton mortality isZN

assumed to be quadratically dependent on the zoo-
plankton standing stock, that is l Zoo2. DetrialZD

particles are remineralized in the mixed layer at a
constant rate l and sink out of the mixed layer atDN

a constant velocity w .D

With these definitions, the model equations read
explicitly

dPhy
sg Phyyg Zooyl Phyyl PhyP Z PN PDd t

mqhq tŽ .
y Phy 5Ž .

MLD

dZoo h tŽ .
2sg Zooyl Zooyl Zoo y ZooZ ZN ZDd t MLD

6Ž .
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dDIN
syg Phyql Phyql Zooql DetP PN ZN DNd t

mqhq tŽ .
q N MLDyDIN 7Ž .Ž .slopeMLD

dDET
2sl Phyql Zoo yl DetPD ZD DNd t

mqhq t qwŽ . D
y Det. 8Ž .

MLD

Ž . Ž .The last terms of Eqs. 5 – 8 account for the
physical processes of nutrient entrainment, dilution

Ž .and mixing Evans and Parslow, 1985 . Dissolved
inorganic nutrients, phytoplankton and detritus are
mixed at the constant mixing rate m across the lower
face of the mixed layer and are diluted if the mixed
layer deepens by hq. Zooplankton Zoo is assumed to
maintain its position in the mixed layer and thus is
diluted if the mixed layer deepens and concentrated
if the mixed layer depth decreases. Nutrients are
entrained from greater depths during deepening of
the mixed layer. The deep nutrient concentrations are
described by assuming a linear increase N withslope

Ž .depth Hurtt and Armstrong, 1996 . The model pa-
rameters are given in Table 1.

The model presented here is very similar to the
Ž .formulations of Oschlies and Garçon 1998, 1999

Ž .and Doney et al. 1996 who also employ a linear
Michaelis–Menten response for phytoplankton

growth and a squared response for zooplankton graz-
ing. The zooplankton mortality is represented by a
quadratic rate in their models as well.

2.2. The inÕerse formulation

The idea underlying the inverse parameter opti-
mization is to combine the simulated model dynam-
ics with the available information about the real
system, that is a set of observations. Based on the
assumption that the validity of the model parameters
depends on the match between the observed data and
the model equivalents of these data, we search for a
set of parameters that provides the best fit of the
model dynamics to the observations. The search for
an optimal parameter set is performed by minimizing
a cost function that measures the misfit between the
data and the model equivalents of the data in a least
squares sense. The cost function is generally of the
form

2™obs sim1 X yX pŽ .i i™F p s , 9Ž .Ž . Ý ž /2 sii

™where p represents the vector of the unknown pa-
rameters. The misfit between the observations X obs

i

and the corresponding simulated model variables

Table 1
Initial guess of model parameters

Parameter Symbol Initial value Unit
y1Phytoplankton maximum growth rate m 1.0 dayP

y3Half-saturation value for phytoplankton growth k 0.25 mmol N mN
y1Phytoplankton mortality rate l 0.05 dayPD
y1Phytoplankton respiration rate l 0.05 dayPN
y1Zooplankton maximum growth rate m 2.0 dayZ

2 y6Ž .Half-saturation value for zooplankton growth k 0.5 mmol N mP
y3 y1 y1Ž .Zooplankton mortality rate l 0.05 mmol N m dayZD

y1Zooplankton exudation rate l 0.05 dayZN
y1Remineralisation rate l 0.05 dayDN

y2 y1 y1Ž .Initial slope of the PI-curve a 0.025 W m day
Photosynthetic active fraction of light par 0.43 dimensionless

y1Detritus sinking rate w 1.0 m dayD
y1Cross thermocline mixing m 0.25 m day

y4Slope of nitrate concentration below the thermocline N 0.016 mmol N mslope

ŽThe initial parameter guess agrees with values in common use compare Oschlies and Garçon, 1999; Doney et al., 1996; Fasham et al.,
.1990 .
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™sim Ž .X p is weighted by the inverse of the assumed ai

priori error s . A minimization algorithm is appliedi

to search for the minimum of the cost function.
Every minimization step requires the computation of
the gradient of the cost function with respect to the
model parameters. Basically, the parameter optimiza-
tion is an iteration of the following three steps.

Ž .A A forward model integration: the forward
Ž .model described in Section 2.1 calculates the evo-

lution of the model state variables in time. Note that
the initial conditions and the physical forcing are
prescribed. Thus, the model dynamics are solely
determined by the choice of the model parameters.
The parameters are called independent variables or
control variables in this context while the model
state variables are dependent variables.

Ž .B An integration of the adjoint model: the ad-
joint model calculates the gradient of the cost func-
tion with respect to the model parameters. We used
the Tangent linear and Adjoint Model Compiler
Ž .TAMC , a source-to-source translator for FOR-

Ž .TRAN programs Giering, 1997 , as a convenient
tool to obtain the adjoint model code.

Ž .C An optimization step: a minimization is per-
formed in the direction of the gradient of the cost
function that was computed in step B. We applied
the quasi-Newton method implemented in the

ŽM1QN3 routine of the MODULOPT library Gilbert
.and Lemarechal, 1989 .´

This procedure is iterated until the gradient of the
cost function is sufficiently small. Since the model is
non-linear it is desirable to start the iteration near the
global minimum in order to prevent the descent
algorithm from being caught in a local minimum.
Since this can be hard to judge in practice, it may
become necessary to start a number of minimizations
from different initial parameter sets.

2.3. The Hessian matrix

Important aspects of the problem formulation can
be revealed by an investigation of the Hessian matrix
of the cost function. Near the global minimum, the
inverse of the Hessian matrix provides a good ap-
proximation of the covariance matrix for the inde-

Ž .pendent model parameters Thacker, 1989 . The con-
dition number of the Hessian, which is defined as the
ratio of its largest to its smallest eigenvalue, deter-

mines the rate of convergence of the minimization
algorithm and indicates how singular the problem is.
For large condition numbers, the matrix is ill condi-
tioned and nearly singular, whereas values close to
unity characterize a well-conditioned matrix. The
inverse eigenvalues of the Hessian are the errors of
combinations of the estimated model parameters.
These combinations are determined by the corre-
sponding eigenvectors. The product of the eigenvec-
tors and corresponding eigenvalues are also called
parameter resolution. In the case of large inverse
eigenvalues, meaning large uncertainties, some of
the model parameter combinations can only poorly
be determined by the data.

The Hessian of the cost function can be approxi-
mated by independently perturbing the control vari-
ables by a small amount and calculating the gradient
of the cost function for each perturbation. The ele-
ments of the Hessian result in

1
™h s EF pqD p rEpŽ .ži j j i2D pj

™yEF pyD p rEp . 10Ž .Ž . /j i

Since this finite difference method can be depen-
dent on the choice of the D p ’s, we have chosen toj

Ž .use the TAMC Giering, 1997 to calculate the Hes-
sian of the tangent linear model. Since the model
under consideration is non-linear, it is crucial to
compute the Hessian at the global minimum of the
cost function, that is for the optimal parameter set.
We ensure this by conducting the sensitivity analysis
for identical twin experiments, where synthetically
produced data are taken as observations. In this case,
the optimal parameter set is known, since it was used
to generate the synthetic data set.

3. Sensitivity experiments

The sensitivity analysis is based on identical twin
experiments at the Bermuda station at 31840XN
64810XW, which is part of the U.S. JGOFS program.
A synthetic data set was created by monthly sam-
pling of the simulated model course from January

Ž .1989 to December 1992 Fig. 2 , using the initial
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ŽFig. 2. Simulated model course at the Bermuda station. A synthetic data set was produced by monthly sampling circles, asterisks and
.crosses represent the synthetic data . The errorbars represent the assumed a priori errors s .i

parameter values given in Table 1. The inverse
formulation of the parameter estimation problem is
obtained by defining the cost function

M1 2™ obs simF p s DIN yDINŽ .Ž . Ý22sDIN is1

M1 2obs simq Phy yPhyŽ .Ý22sPhy is1

M1 2obs simq Zoo yZoo . 11Ž . Ž .Ý2ž /2sZoo is1

Please note that the third term on the right hand
side of the equation accounts for zooplankton data
and is only relevant for the experiments E4 and E7
Ž . 2Table 2 . The weights 1rs are chosen to be equali

for the dissolved inorganic nutrients, phytoplankton
Ž y3and zooplankton s s0.1 mmol N m , isDIN,i

.Phy, Zoo . The Hessian of F is calculated according
to the procedure described in Section 2.3.

3.1. Experiment E1— assimilation of nitrate and phy-
toplankton at the Bermuda station

Ž .For the first assimilation experiment E1, Table 2
we employ monthly nitrate and phytoplankton data.
This corresponds to the data availability from the

Ž .Bermuda Atlantic Time-series Study BATS . The
Hessian matrix for this formulation was calculated.
Its condition number is 9.0=107, indicating a nearly
singular Hessian and an ill-conditioned problem for-

Ž .mulation. The a posteriori errors given in Table 3
are enormous especially for the initial slope of the
PI-curve a , the fraction of photosynthetically active
radiation par and the parameters related to zooplank-
ton, that is the maximum grazing rate m , the half-Z

saturation constant for ingestion k and the zoo-P

plankton mortality l . The parameter resolution,ZD

given by the eigenvectors and eigenvalues of the
Hessian, is shown in Fig. 3. The eigenvectors be-
longing to the smallest eigenvalues represent combi-
nations of parameters that either cannot be deter-
mined at all or have large uncertainties. By far the
smallest eigenvalue is l s1.4=10y6. The corre-1
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Table 2
Description of the twin experiments E1–E8

Experiment Comments

E1 Monthly nitrate and phytoplankton data at the BATS site were employed. All 12 biological model parameters
are included in the inversion.

E2 Monthly nitrate and phytoplankton data at the BATS site were employed. par and the maximum grazing rate mZ

were kept fixed.
E3 Monthly nitrate and phytoplankton data at the BATS site were employed. par, m and the maximum growth rate mZ P

were kept fixed.
E4 Monthly nitrate, phytoplankton and zooplankton data at the BATS site were employed. par, m and m were kept fixed.Z P

E5 Monthly nitrate, phytoplankton and nitrate uptake data at the BATS site were employed. par, m and m were kept fixed.Z P
Ž .compare E3

E6 Monthly nitrate and phytoplankton data at the North Atlantic site were employed. par and m were kept fixed.Z
Ž .in analogy to E2

E7 Monthly nitrate, phytoplankton and zooplankton data at the North Atlantic site were employed. par and mZ

were kept fixed.
E8 Monthly nitrate and phytoplankton data at the BATS and the North Atlantic sites were employed. par and mZ

Ž .were kept fixed. combination of E2 and E6

™sponding eigenvector Õ has significant contribu-1

tions only for the light parameters a and par. Thus,
all information on the independent component of a

™and par is represented by Õ . As the corresponding1

eigenvalue l is extremely small, the independent1

component of a and par cannot be determined by
assimilation of the data or, in other words, a and par
cannot be determined independently. Inspection of
the model equations reveals that a and par enter the

Žmodel only in multiplicative combination compare
Ž ..Eq. 3 . Thus, the indefiniteness of the combination

of a and par results from the model formulation of

the light-curve and the dependence of both parame-
ters is not surprising. However, since a and par
enter the model only in multiplicative combination,
all we need to optimize is their product. By denoting

Ž .a :saPpar we reformulate Eq. 3 toˆ

a Iˆ
F I s . 12Ž . Ž .

2 2 2(m qa IˆP

In all following experiments, we restrict the opti-
mization to the combination a . This is realizedˆ

Table 3
Condition numbers and a posteriori errors for experiments E1–E8

Exp. E1 E2 E3 E4 E5 E6 E7 E8
7 4 4 4 4 5 5 4Cond. 9.0=10 1.2=10 1.1=10 1.7=10 1.1=10 1.6=10 1.2=10 3.0=10

Post.
m 2.5 2.4 – – – 0.62 0.45 0.37P

k 2.2 2.2 1.4 1.2 1.4 1.3 1.1 0.36N

l 3.6 3.6 3.4 2.8 3.4 2.4 1.7 1.2PD

l 6.1 5.9 5.5 4.4 5.5 4.3 4.7 2.1PN

m 49 – – – – – – –Z

k 53 1.4 1.4 0.84 1.4 2.9 1.4 1.1P

l 12 10 10 3.7 10 3.4 1.2 1.8ZD

l 2.3 1.5 1.5 0.87 1.5 2.8 1.3 1.0ZN

l 4.2 4.2 4 3.6 4.0 4.8 3 2.2DN

a 596 1.8 1.5 1.3 1.5 2.2 2.3 0.97
par 596 – – – – – – –
w 5.7 4.7 4.5 2.9 4.5 3.2 1.5 1.3D

All errors are scaled by the initial parameter values.
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Fig. 3. Parameter resolution for experiment E1. Monthly measurements of nitrate and phytoplankton concentrations were employed.
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practically by fixing par on the initial guess and
seeking only a .

The second smallest eigenvalue is l s1.9=2
™y410 . The corresponding eigenvector Õ combines2

information on zooplankton parameters, basically the
Ž .grazing parameters m maximum grazing rate andZ

Žk half-saturation constant for phytoplankton inges-P
.tion , with a small contribution from the zooplankton

mortality l . The combination of m and k isZD Z P

only poorly constrained by the data, or in other
words their a posteriori errors are large. A possible
reason might be that the simulated model course is
almost stationary, that is, the state variables change
only slightly with time. The phytoplankton standing
stocks in the subtropical North Atlantic remain at a
low and relatively constant level compared to re-
gions with a more pronounced seasonal cycle, such
as the midlatitudes of the North Atlantic, which are
characterized by a strong increase of nutrient concen-
trations during deep winter mixing events and high
plankton standing stocks during the typical spring
and autumn blooms. In accordance with observations
Ž .Michaels and Knap, 1996 , the simulated phyto-
plankton concentrations at the BATS station remain
between 0.1 and 0.2 mmol N my3 and the model
course shows no high amplitude signals. Conse-
quently, the grazing rates that correspond to the data
cover only a small range of the parameter space
close to the stationary point. In this case, the grazing
rates that correspond to the AmeasuredB data are
limited to the initial slope of the grazing response.

ŽNo data points lie within the saturation range Fig.
.4 . The information contained in the data does not

suffice to estimate both the half-saturation constant
and the saturation rate at the same time. The same
problem applies to the determination of the growth

Ž .parameters m maximum growth rate and kP N
Ž .half-saturation concentration for nitrate uptake . The
simulated growth rates cover a slightly broader range
than the grazing rates, but are still limited to the

Ž .initial slope of the growth response Fig. 4 .

3.2. Experiments E2 and E3— a modification of the
problem formulation

As a result of experiment E1, the maximum graz-
ing rate and the half-saturation constant for phyto-
plankton ingestion cannot be estimated simultane-
ously. We believe this to be due to the fact that

grazing rates are restricted to a small part of the
grazing response function. Thus, the applied data set
does not contain enough information to determine
both parameters simultaneously. The same problem
applies to the phytoplankton growth function where
data are restricted to the initial slope of the growth
response. The maximum growth rate and the half-
saturation constant for nutrient uptake may not be
estimated at the same time.

To test this hypothesis we check first if the condi-
tioning of the problem improves when we restrict the
search to the half-saturation concentrations and sup-
pose we know the maximum grazing and maximum
growth rates. In experiment E2 only the maximum
grazing rate m was kept fixed at the optimal value.Z

This modification improved the condition number
considerably to 1.2=104. Also the a posteriori er-

Ž .rors are smaller for most of the parameters Table 3 .
In particular the errors of k and a are reduced byP

two and three orders of magnitude, respectively. In
experiment E3, the maximum growth rate m wasP

held constant as well. This leads again to a small
improvement of the condition number and the a
posteriori errors. However, as the errors range from
140% for k to 1000% for the zooplankton mortalityP

l , they are still far from being acceptable.ZD

The parameter resolution for E3 is shown in Fig.
5. Note that the first four eigenvectors that corre-
spond to the smallest eigenvalues are very similar in
experiments E2 and E3. The most uncertain parame-

™ter combination Õ contains information only on the1

mortality rate of zooplankton l while contribu-ZD

tions for l are negligible in all other eigenvectors.ZD

Thus, l is independent of the other parametersZD

and practically not constrained by the data. This is
consistent with the outstanding large a posteriori
error of 1000% for l . We assume that this is dueZD

to lack of data.
The schematic of the model state variables and

Ž .flows Fig. 1 illustrates that fluxes between phyto-
plankton, zooplankton and detritus are not directly
constrained by the data set used. The model allows
different pathways to close the nitrogen cycle, namely
phytoplankton™ zooplankton™detritus™nitrogen
and phytoplankton™detritus™nitrogen. The recy-
cling pathways are likely to be unconstrained if
neither zooplankton nor detritus information is avail-
able. The conditioning of the problem might improve
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Fig. 4. Zooplankton grazing and phytoplankton growth response. Actual growth and grazing rates corresponding to the synthetic monthly
DIN Phy 2

Ž .data points are calculated as m and m , respectively. Values are displayed for the Bermuda station asterisks and aP Z 2k qDIN k qPhyN P
Ž .North Atlantic station open circles , which we refer to in Section 3.4.

if other types of measurements, e.g. observations of
zooplankton or fluxes, are incorporated. This consid-

eration motivates the following experiments E4 and
E5.
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Fig. 5. Parameter resolution for experiment E3. Monthly measurements of nitrate and phytoplankton concentrations were employed. par, mZ

and m were kept fixed.P
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3.3. Experiments E4 and E5— additional employ-
ment of zooplankton and primary production data

We suppose that the large a posteriori errors in
experiment E3 are due to gaps in the employed data
set, which comprises only nitrogen and phytoplank-
ton data. In experiment E4, we modify E3 by the
additional inclusion of zooplankton data. A remark-
able increase in the accuracy of the estimated param-
eters is achieved by the incorporation of zooplankton
data. The a posteriori errors improved in particular
for the zooplankton related parameters k , l andP ZN

l , but also for all the other parameters. Note thatZD

in spite of the decreased errors, the condition number
of the Hessian is slightly larger than for E3. This
means that the new data does not add information to
the poorly determined combination of parameters
which is represented by the smallest eigenvalue.
Instead, the new data increase the precision of the
already well determined parameter combinations. In
terms of the Hessian spectrum, the largest eigenval-
ues are raised even further, thereby increasing the
range of the spectrum.

Several parameter optimization studies employ
measurements of primary production in addition to
nitrate and chlorophyll data. Experiment E5 is per-
formed to assess how this additional information
affects the accuracy of the parameter estimation.
Experiment E5 compares to E3, differing from E3
only in the inclusion of the actual nitrate uptake rate
measurements, that is g Phy, which corresponds toP

the use of primary production data in parameter
optimization assimilations. The inclusion of the up-
take rate data did not improve the accuracy of the
parameters. This result suggests that measurements
of the flux of nitrogen from the inorganic nitrogen
pool to phytoplankton does not add any information

to the system that is not already contained in the
inorganic nitrogen and phytoplankton data.

3.4. Experiments E6, E7 and E8— assimilation at the
North Atlantic station at 478N 208W

Here we come back to the previously mentioned
problem that the ecosystem dynamics at the Bermuda
site is nearly stationary with relatively low plankton
standing stocks. We hypothesized in Section 3.2 that
the restricted data coverage of the functional growth
and grazing response contributes to the difficulty of
the parameters optimization problem. Some evidence
for this was shown by the improved parameter accu-
racy after assuming that the maximum growth and
grazing rates were known. To perform another check
of this hypothesis, we apply the optimization proce-
dure to a station at a different location in the North
Atlantic where a broader coverage of the functional
growth and grazing responses is provided. A simula-
tion at the North Atlantic station at 478N 208W was
performed, employing the previously used parameter
set. The model course at this site has a pronounced
seasonal cycle with a high amplitude spring bloom
Ž .Fig. 6 . The corresponding uptake and growth rates
spread over a wider range of the parameter space

Ž .than at BATS Fig. 4 . The phytoplankton growth
rates seem to be satisfactorily covered while the
grazing rates are still restricted to the initial slope.

In analogy to experiment E2 we perform experi-
ment E6 at this station. Inspection of the Hessian
reveals that the phytoplankton parameters and the
zooplankton mortality are determined with higher
accuracy in comparison to E2, while the accuracy
slightly decreased for a few other parameters. An
additional incorporation of zooplankton, done in E7,
reduces these errors. We assume that the best esti-
mate of the parameters can be expected if we employ

Fig. 6. Simulated model course at the North Atlantic station at 478N 208W and a synthetic data set that was produced by monthly sampling.
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the North Atlantic and the Bermuda data sets simul-
taneously. This is done in E8. In E8 we achieved the
best accuracy of all experiments. The most uncertain
parameters with uncertainties of over 200% are the
phytoplankton mortality l and the remineraliza-PN

tion rate l .DN

4. Discussion of the sensitivity analysis

A sensitivity analysis was conducted to assess the
capability of the adjoint method to optimize the
ecological model parameters. The parameter opti-
mization may be difficult for a variety of reasons.
Generally, difficulties might be associated with the
formulation of the inverse problem that is to be
solved and with the numerical approach to its solu-

Ž .tion Thacker, 1989 . Difficulties might stem from
the model formulation itself. The data may be an-
other source of difficulty, i.e. they may be inade-
quate to determine the model parameters, thereby
causing the least squares problem to be singular or
ill-posed. By investigating the Hessian matrix of the
problem we tried to sort out the different sources of
difficulty. The initial formulation of the problem
turned out to be ill-posed with parameter combina-
tions that could be estimated only with large uncer-
tainties and with expected slow convergence of the
minimization algorithm. One difficulty obviously
arose from the formulation of the model itself. Pa-
rameters that enter the numerical model formulation
only as a product of each other cannot be estimated
independently. In our first model formulation, the
initial slope of the PI-curve a and the fraction of
photosynthetically active radiation par occur as a
product only. The uncertainty related to the unfavor-
able formulation can easily be circumvented by re-
stricting the optimization to the combination of both
parameters.

Furthermore, we found evidence that the informa-
tion provided by the available measurements is not
sufficient to constrain all parameters. Two major
reasons cause the inadequacy of the data set. Firstly,
the data set is restricted to only nitrate and phyto-
plankton observations. That turned out to be respon-
sible for the poor accuracy of the parameters related
to zooplankton behavior and the remineralization
process, since two alternative unconstrained cycling

pathways exist. Experiments with additional incorpo-
ration of zooplankton data displayed an improvement
of the accuracy of these parameters. Secondly, it
matters which region of the parameter space is cov-
ered by the data. Observations of an ecosystem
which is close to equilibrium like at the Bermuda
site provides less information on model parameters
than ecosystems with pronounced seasonal changes.
In particular the growth and grazing rates at the
Bermuda site are restricted to the initial slope of the
functional response and do not constrain the satura-
tion concentrations. The inclusion of observations
from a North Atlantic site with a clear yearly cycle
provided a better coverage of the parameter space
and increased the accuracy of the estimated parame-
ters.

5. Parameter optimization at the Bermuda station

We performed a parameter optimization by assim-
ilating data of the Bermuda Atlantic Time-series

Ž . Ž .Study BATS Michaels and Knap, 1996 . Biweekly
to monthly measurements of nitrate, nitrite and
chlorophyll within the period January 1989 to Octo-
ber 1992 were employed. The observed data have
been transformed as follows to serve as counterparts
to the simulated variables. Nitrate and nitrite were
added to be comparable to the dissolved inorganic
nitrogen pool. Ammonium concentrations had to be
neglected since ammonium concentrations are not
measured on a regular basis. Chlorophyll measure-
ments are generally assumed to represent the phyto-
plankton standing stock and were compared to the
model phytoplankton. The necessary conversion from

w y3 x wchlorophyll mg chl m to phytoplankton mmol N
y3 xm is problematic, since the intracellular ratios of

chlorophyll to carbon and chlorophyll to nitrogen are
known to vary considerably. The chlorophyll to car-
bon ratio varies not only for different species but
also due to changes in environmental conditions,
e.g., differences in the ambient nutrient or light
climate. Recently, different parameterizations for a
variable chlorophyll to carbon ratio have been sug-

Žgested in the context of parameter optimization Hurtt
and Armstrong, 1996, 1999; Schartau et al. 2000;

.Spitz et al. 2000 while other studies rely on a
Žconstant average conversion ratio Evans, 1999;
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Fasham and Evans, 1995; Prunet et al., 1996a,b;
.Spitz et al., 1998 . We assume a constant ratio of
Ž .y1c s1.2 mg chl mmol N in this study. The1

vertically distributed data were integrated over the
prescribed mixed layer depth to correspond to the
simulated mixed layer mean concentrations.

The sensitivity analysis discussed in Section 3
revealed that not all parameters can be determined
by the optimization. Therefore, we restrict the in-
verse formulation to 8 of the 12 biological model
parameters. The fraction of the photosynthetically
active radiation par was fixed. An inclusion of par in
the inversion is not appropriate since it enters the
model formulation only in combination with the

Ž .initial slope of the PI-curve a see Section 3.1 , but
also not necessary since par is a relatively well
known parameter. Furthermore, the maximum growth
and grazing rates m and m were excluded fromP Z

the parameter estimation, since the nearly stationary
ecosystem dynamics at the Bermuda station does not
allow the optimization of the half-saturation concen-
trations and the corresponding maximum rates simul-

Ž .taneously see Section 3.2 . The twin experiments
revealed that the zooplankton mortality rate l isZD

practically not constrained if only nitrate and phyto-
plankton observations are employed. Since no zoo-
plankton data are available for our optimization
problem, we also fixed the zooplankton mortality.
par, m , m and l are fixed to the initial guessP Z ZD

Ž .values Table 1 .
The cost function of the optimization problem has

been defined as

1 2obs™ simF p s Ý NO qNO yDINŽ .Ž . Ž .3 222sDIN

1 2obs simq Ý Chl rc yPhyŽ .122sPhy

™qF p 13Ž .Ž .prior

1
™ 0 2Ž . Ž Ž . Ž ..where F p s Ý ln p r p .prior i i i2

The first two terms of the right hand side of Eq.
Ž .13 represent the model-data misfit for the inorganic
nitrogen pool and the phytoplankton standing stock
respectively. The term F was added to penalizeprior

estimates outside of the acceptable parameter range.
Ž .As pointed out by Evensen et al. 1998 , any avail-

able a priori information on the parameters should be
used to constrain the problem. Unfortunately, we do
not have much a priori information, but we know at
least that negative parameter values are meaningless.
Consequently we have chosen F such that nega-prior

tive parameter values are avoided. Otherwise, nega-
tive parameter values might occur during gradient
descent steps of the minimization algorithm. The
variance s 2 is based on estimated standard devia-DIN

Žtions of the measurements for nitrate s s0.08NO 3
y3 . Žmmol N m and nitrite s s0.02 mmol NNO 2

y3 . Ž .m Grasshoff et al., 1999 . A standard deviation
of s s0.1 mmol N my3 is assumed for phyto-Phy

plankton measurements. Since the cost function in
Ž .Eq. 14 differs from the cost function used for the

Ž Ž .twin experiments described above Eq. 11 in Sec-
.tion 3 , the error estimates for the twin experiments

cannot be compared directly to the estimates for the
real data experiment in this section. We have per-
formed an additional twin experiment in analogy to

Ž .Section 3 employing the cost function 14 to obtain
the error estimates that directly correspond to the
estimated errors for the real data experiment.

5.1. Results of the optimization

Our first guess for the model parameters is the
Žpreviously used parameter set compare Tables 1 and

.4 , which is based on parameter values in common
use. The model simulation based on the first guess
parameter set leads to relatively good agreement
between the simulated course and the observed inor-

Ž .ganic nitrogen and chlorophyll data Fig. 7 . The
simulated course lies within the error range for most
of the measurements. There are mainly three ob-
served features that are not reproduced by the model.
The model does not capture the increased nitrogen
concentrations during the deep mixing periods in
winter, especially in January, February and March
1992. The simulated chlorophyll concentrations are
systematically higher than the observations during
summer, and the simultaneous increase of observed
chlorophyll concentrations and inorganic nitrogen
from late autumn to early winter is not captured by
the model.

The optimized parameter values with their a pos-
teriori error estimates and the a posteriori errors for
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Ž .Fig. 7. Simulated model course solid and dashed lines at the Bermuda station based on the initial guess parameter set in comparison to the
Ž .observed data circlesrasterisks with a priori error bars.

the twin experiment are given in Table 4. The opti-
mization changed the half-saturation concentration

for nitrate uptake k and the phytoplankton respira-N

tion rate l most notably, with a decrease in k byPN N

Table 4
ŽModel parameters: initial guess, optimal estimate with absolute a posteriori errors and relative a posteriori errors scaled by the optimal

.estimate , also shown are the relative errors of the corresponding twin experiment

Parameter Initial Relative Optimal estimate with Relative error of
value error absolute errors twin experiments

y3k 0.25 0.81 0.043"0.035 mmol N m 0.55N
y1l 0.05 0.65 0.084"0.055 day 0.50PD
y1l 0.05 0.58 0.116"0.065 day 0.81PN

2 y6Ž .k 0.5 0.54 0.275"0.145 mmol N m 0.63P
y1l 0.05 0.42 0.036"0.015 day 0.65ZN
y1l 0.05 0.61 0.089"0.055 day 0.81DN

y2 y1 y1Ž .a 0.025 0.27 0.025"0.007 W m day 0.27
y1w 1.0 0.28 0.97"0.27 m day 0.28D
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a factor of 5 and an increase in l by a factor of 2.PN

The other parameters differ by about 50% or less
from their initial guess. The model course, resulting
from the optimal estimate, is shown in Fig. 8. Only a
slight improvement of the match between observa-
tions and simulation is evident. The increase of
inorganic nitrogen during the mixing event in Jan-
uary–February 1992 is more pronounced in the opti-
mized simulation. The mismatch between model and
data during summer periods improved slightly. The
most obvious change between the initial and the
optimized simulations is a dramatic increase in zoo-
plankton concentrations, which are not constrained
by any data.

An assessment of the a posteriori errors was done
by calculating the Hessian matrix of the tangent

linear model for the optimal parameter set according
to Section 2.3. The resulting condition number of the
problem is 435. This relatively small value indicates
that the problem with prior knowledge term is well
conditioned. The condition number of the corre-
sponding twin experiment is small as well with a
value of 106. The significant reduction of the condi-
tion number compared to Section 3 is due to the
prior knowledge term F , which obviously regu-prior

larizes the problem. The prior knowledge also re-
Žduces the a posteriori errors compare errors in Table

.4 with previous results given in Table 3 , but most
errors still range around 50% of the initial parameter
value. Note that most of the optimized values differ
from their initial guess by less than their a posteriori
error estimate.

Fig. 8. Simulated model course at the Bermuda station based on the optimal parameter set in comparison to the observed data.



( )K. Fennel et al.rJournal of Marine Systems 28 2001 45–63 61

6. Discussion of the parameter optimization

The parameter optimization did not improve the
match between the model and the observations no-
tably. The simulation that is based on the new pa-
rameter set is very similar to the initial simulation in
terms of nitrate and phytoplankton, which were con-
strained by observed data. The most obvious reduc-
tion of the model-data misfit was achieved for nitro-
gen concentrations during a deep mixing event in
January–March 1992. The zooplankton course, which
was not constrained by any observations, changed
remarkably. This is consistent with the large uncer-
tainties of the zooplankton parameters given by the
sensitivity analysis, since large uncertainties of pa-
rameters allow large variations of these parameters
during the optimization procedure.

There may be different reasons for the poor result
of the optimization. Firstly, the course of the ecolog-
ical variables depends largely on the physical forcing
conditions, namely the mixed layer depth, which
were prescribed. In terms of the parameter estimation
procedure, prescribing the physical forcing is equiva-
lent to the assumption that the forcing is correct.
Thus, the optimization parameters are adjusted in
such a way that they correct for any errors related to
physical forcing conditions that influence the ecolog-
ical state variables. Secondly, the model is zero-di-
mensional, which is clearly an oversimplification.
All the ecological state variables are considered as
average concentrations over the mixed layer. This
misconstrues important features of the ecosystem at
Bermuda, e.g. the deep chlorophyll maximum persis-
tent below the mixed layer. A third potential reason
for errors is the omission of advective transport
processes in the model. Since mesoscale eddies in-
fluence the Bermuda region, advection is likely to be
important.

However, a major concern goes beyond the issues
related to spatial resolution and external forcing. The
whole optimization has to be questioned if the model
does not represent the observed system appropri-
ately. The parameter optimization is bound to fail if
the model does not resolve the processes which
determine the observed features. The application of
the optimization procedure to a specific model and a
corresponding set of observations relies on the inher-
ent assumption that the simulated and observed sys-

tems are consistent. The simultaneous increase of the
observed chlorophyll and nitrate concentrations dur-
ing deep mixing periods in winter is an example of
such an unresolved feature, which is not possible to
grasp with the present model formulation. It might
be related to variations in the chlorophyll to nitrate
ratio that are not resolved by the present model.
Furthermore, the microbial loop, which is not in-
cluded in the present model that is rather designed as
a representation of the linear food chain, is probably
an important factor.

7. Conclusions

A sensitivity analysis should be an integral part of
any attempt to optimize the parameters of ecological
models. Sensitivity experiments are extremely help-
ful in revealing problems that contribute to the diffi-
culty of parameter optimization and formulation of a
well-conditioned problem. There are sources of error
related to an inappropriate formulation of the prob-
lem that can be circumvented. Furthermore, the sen-
sitivity experiments can identify gaps or inadequa-
cies in the applied data set. A data set can be
insufficient because information on certain parts of
the model is missing or because of poor coverage of
the parameter space. In this context the sensitivity
analysis goes beyond the rather technical issue of
formulating the optimization problem as it provides
feedback to observationalists about how to design
field campaigns and sampling strategies that allow
one to constrain numerical models.

The application of the optimization procedure to
real data at the Bermuda station brought up a more
fundamental problem. The parameter estimation gave
poor results that we believe to be due to an inconsis-
tency of the present model formulation with the
ecological system under observation. This outcome
emphasizes the important role that parameter opti-
mization methods can play in testing model assump-
tions during model development. Since it is not
possible to verify the theoretical assumptions under-

Ž .lying a model in principle Oreskes et al., 1994 and,
moreover, ecological modeling is mostly heuristic
and in a comparably premature state, the model
development has to be viewed as an iterative process
where the refutation of model assumptions leads to
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Ž .the development of new hypothesies Loehle, 1983 .
In this respect, the systematic test of parameter
choices by the application of optimization techniques
can be extremely powerful.
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