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ABSTRACT: The need to characterize and track coastal hypoxia has
led to the development of geostatistical models based on in situ
observations of dissolved oxygen (DO) and mechanistic models based
on a representation of biophysical processes. To integrate the benefits
of these two distinct modeling approaches, we develop a space−time
geostatistical framework for synthesizing DO observations with
hydrodynamic−biogeochemical model simulations and meteorological
time series (as covariates). This fusion-based approach is used to
estimate hypoxia in the northern Gulf of Mexico across summers from
1985 to 2017. Deterministic trends with dynamic covariates explain
over 35% of the variability in DO. Moreover, cross-validation results
indicate that 58% of DO variability is explained when combining these
trends with spatiotemporal interpolation, which is substantially better
than mechanistic or conventional geostatistical hypoxia modeling
alone. The fusion-based approach also reduces hypoxic area uncertainties by 11% on average and up to 40% in months with sparse
sampling. Moreover, our new estimates of mean summer hypoxic area changed by >10% in a majority of years, relative to previous
geostatistical estimates. These fusion-based estimates can be a valuable resource when assessing the influence of hypoxia on the
coastal ecosystem.

1. INTRODUCTION

Hypoxia is a phenomenon in which dissolved oxygen (DO)
concentrations are insufficient to support most marine life, and
processes underlying the ecosystem function are altered or
impaired.1 Hypoxia is usually defined as DO below 2 mg/L,
which is an important threshold for many marine species.2 The
main causes of anthropogenic hypoxia are excess nutrient
loadings leading to increased organic matter production and
decomposition (eutrophication), combined with water column
stratification that inhibits reoxygenation of the bottom water
column.3,4 Such hypoxic regions are often referred to as “dead
zones”, as fish and shellfish are forced to move from these
regions to more oxygen-rich waters, or else perish. In 2008,
over 245,000 km2 of the world’s coastal waters were reported
to experience hypoxia at varying levels of severity.5 This
number has further increased over the past decade, as
eutrophication and algal blooms continue to increase.6−8

Some of the largest hypoxic zones in the world are found in the
Black Sea, Baltic Sea, East China Sea, and northern Gulf of
Mexico.5

The magnitude of hypoxic zones and their effects on aquatic
life have led to the inception of several governmental and
academic programs that study the causes, extent, and
consequences of hypoxia.9−11 The hypoxic zone in the

northern Gulf of Mexico is of particular interest because it is
the second largest anthropogenic dead zone in the world and
because of potential consequences for the region’s fisheries.10

Previous studies have explored correlations between annual
estimates of the hypoxic area and fish and shrimp catch
data.12−14 Research in recent years, however, emphasizes the
need for higher spatiotemporal resolution DO estimates in
studying the growth, distribution, and behavior of fish and
fisheries.15−17 Also, an action plan was formulated in 2001 to
implement watershed nutrient controls to reduce the hypoxic
extent to 5000 km2 (as a 5 year moving average) by 2015.18

This plan has been revised over the years, and the current goal
is to achieve the reduction by 2035.10 Reliable estimates of
hypoxia are crucial for evaluating progress toward this goal.
Hypoxia monitoring efforts often provide limited spatio-

temporal coverage because of the time and resources required
to conduct extensive cruises.19−21 Sparse monitoring data can
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lead to uncertain estimates of hypoxic severity, as DO levels
can vary dynamically across space and time. For example, high
winds associated with low-pressure systems and tropical storms
disrupt water-column stratification, promoting reoxygenation
of the bottom waters and temporarily dissipating hypoxia.22−24

Prior studies have shown that it takes around 2 weeks for
hypoxia to re-form on the Louisiana shelf after large storm
events.25−27 In addition to meteorological changes, DO in
coastal systems responds to physical and biogeochemical
processes that are influenced by coastal circulation pat-
terns.28−30 To address these challenges, a number of statistical
and process-based models,27,31−33 each with distinct advan-
tages and limitations,34,35 have been developed to assess and
predict hypoxia.36

Geostatistical models estimate spatial patterns in environ-
mental variables, such as DO, using observations from
monitoring programs and covariates, such as water
depth.37−39 The geostatistical framework allows for rigorous
uncertainty quantification through preserving the covariance
structure of the observations, and aggregated quantities (i.e.,
total hypoxic area) can be probabilistically estimated using
spatial Monte Carlo simulations, often referred to as
“conditional realizations”.40 While most geostatistical models
focus on spatial variation in data,37,38 space−time models
rigorously account for temporal variability as well.41,42 A
recently developed space−time geostatistical model for the
northern Gulf assimilates bottom water DO (BWDO) data
from multiple research programs and allows for probabilistic
estimation of hypoxia across each summer (May−September)
from 1985 to 2016.39 However, the model does not account
for biophysical drivers of hypoxic variability (e.g., wind,
nutrient load, and so forth), and for times and locations
where observational data are sparse, the uncertainty in
estimated values is high.
Mechanistic hypoxia models consider riverine and meteoro-

logical inputs using a series of process-based equations to
simulate physical, chemical, and biological properties of aquatic
systems.43−45 For these models, development of DO
predictions is less dependent on the availability of proximate
observational data.46 Also, these models can be used to
evaluate the consequences of management strategies on
hypoxic severity.45,47 However, estimates obtained from
mechanistic models are not always consistent with the available
observational data.44 Additionally, there is uncertainty
associated with model structure, parameter estimates, and
boundary and initial conditions,27,48 which can be difficult to
characterize, particularly for complex mechanistic models.
Multiple hydrodynamic−biogeochemical models have been
developed to study coastal hypoxia, including the regional
ocean modeling system (ROMS).43,44,49

Integrating outputs from mechanistic models within a
geostatistical framework can help account for variation in
water quality resulting from biophysical processes. While such
approaches are not common, Murphy et al. (2010) leveraged a
mechanistic water quality model output in a geostatistical
model for DO. In their study, the integrated approach was
shown to substantially improve the predictive performance,
though estimates were limited to spatial interpolations at the
times of monitoring cruises.38 Integrated models have also
been implemented in the fields of geology and air quality. For
example, Rühaak et al. (2014) developed a universal kriging
model to estimate the subsurface temperature using limited
borehole observations and output from a numerical temper-

ature model.50 Goovaerts et al. (2008) used output from a
process-based atmospheric deposition model as a covariate in a
geostatistical model to estimate the dioxin levels.51 However,
none of these studies modeled the temporal correlation
structure to enable continuous estimation through time.
The primary objective of this study is to assess the efficacy of

a spatial−temporal geostatistical framework that integrates in
situ observations of BWDO with temporally dynamic
covariates that are related to hypoxia formation. In addition
to leveraging output from a mechanistic model, we also explore
the utility of wind speed, precipitation, sea surface temperature,
and solar irradiance data, which are related to biophysical
processes controlling hypoxia (e.g., photosynthesis, vertical
mixing, and so on).44,52 These covariates are evaluated through
statistical criterion-based variable selection. Improvements in
predictive performance are described relative to a baseline
geostatistical model without dynamic inputs.39 The robustness
of the improvements are assessed through cross-validation
(CV), and the enhanced model is then used to estimate the
hypoxic area (with quantified uncertainty) across each summer
from 1985 to 2017 through conditional realization. Finally, DO
and hypoxic area estimates from this new fusion-based
approach are compared with previous estimates to help
improve our understanding of historic hypoxic variability in
the northern Gulf of Mexico.39

2. METHODS
2.1. Data. The DO sampling data used here were described

by Matli et al. (2018).39 Briefly, this dataset included 7000
observations collected from 150 monitoring cruises, as
archived in National Oceanic and Atmospheric Administration
(NOAA) National Center for Environmental Information
(NCEI).39 In this study, we also included observations from a
2017 monitoring cruise conducted by the Southeast Area
Monitoring and Assessment Program (SEAMAP)53 and
1992−1994 cruises conducted by Texas A&M University54

(also available through NCEI). Observations collected from
May to September of 1985−2017 were used in model
development, as hypoxia occurs predominantly in summer.
Distances were calculated using Universal Transverse Mercator
Zone 15N, and bathymetry was extracted from a coastal relief
model.55 Based on the estimated maximum hypoxic zone
extent determined by previous studies, the study area was
limited to 94.605−89.512° W, 28.219−29.717° N, and 3−100
m depths.37,39 This area extends from the outlet of Mississippi
River to the Bolivar Peninsula, TX. Within this area, model
estimates were resolved across a 5 km square estimation grid.
Meteorological data used in this study were obtained from

NASA’s Prediction Of Worldwide Energy Resources
(POWER) project. These data include the surface water
temperature, wind speed, precipitation, and solar irradiance
from atmospheric models driven by satellite observations.56

These coarse resolution (0.5° by 0.5°) data from POWER
were resolved to the relatively fine-scale estimation grid of this
study using inverse distance weighing (IDW). We note that
POWER data correlated well with the wind data collected by
NOAA buoys in the region (Supporting Information, SI-1).
Temperature, salinity, and DO predictions from ROMS, a

hydrodynamic−biogeochemical model described in Laurent et
al. (2017), were used in the current study (Supporting
Information SI-2).57 The ROMS grid varies from a fine-scale
resolution (∼1 km) near the Mississippi and Atchafalaya River
deltas to coarse resolution (∼20 km) in far-field deep ocean
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regions. Water density was determined using temperature and
salinity output.58 The strength of density stratification was
computed as the ratio of the density difference (surface to
bottom) to the water-column depth. This measure of overall
water-column stratification is comparable to the potential
energy anomaly, which has been used to study Gulf hypoxia
dynamics.59,60 The irregular resolution ROMS output was
mapped to the geostatistical estimation grid using IDW.
2.2. Geostatistical Modeling Framework. The space−

time geostatistical model resolves the response variable
(BWDO) as the combination of deterministic and stochastic
components (eq 1).39

β η ε= + +xBWDO (1)

The deterministic component (xβ) is similar to multiple
linear regression (MLR) with covariates, x, and trend
coefficients, β. Matli et al. (2018)39 found linear trends with
respect to easting (E) and northing (N) and quadratic trends
with respect to depth (D) and day-of-year (T) to be significant
in explaining the BWDO variability. In addition to continuous
trends, a year-specific (categorical) variable (i.e., “annual
intercepts”) was included to allow for shifts in mean annual
BWDO. In this study, we considered additional linear and
quadratic trends with respect to the wind speed, temperature,
precipitation, solar irradiance, and ROMS DO′ and strength of
stratification (Sstrat). Meteorological variables were considered
over multiple candidate averaging periods of 1, 2, 3, 7, 14, 21,
and 28 days preceding the day of estimation. For these periods,
the data were triangularly weighted (i.e., linearly declining
weights from the prediction date backward in time), consistent
with previous Gulf hypoxia modeling studies.27,45

The stochastic component (η + ε) of the geostatistical
model resolves the remaining variability (not explained by the
deterministic component) as the sum of correlated (η) and
uncorrelated (ε) stochasticity (i.e., variance). Uncorrelated
stochasticity is also known as “nugget”, which accounts for
random errors from sampling procedures and environmental
microvariability.61,62 The stochastic covariance was modeled as
a function of spatial and temporal lags using a nonseparable
exponential space−time covariance function (eq 2).39
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where Q is the covariance between two observations separated
by a spatial lag si,j and a temporal lag ti,j. Parameter ση

2 is the
partial sill (i.e., correlated stochasticity) and σε

2 is the nugget
variance. The spatial lag si,j was determined using an anisotropy
parameter, α, that accounts for greater correlation in the east−
west dimension relative to the north−south dimension
(Supporting Information SI-3).63,64 Finally, a (km) and b
(days) are scaling parameters that correspond to approximately
one-third of the spatial and temporal correlation range,
respectively. All covariance parameters were estimated using
restricted maximum likelihood.65

2.3. Variable Selection. The current study considered a
large pool of ROMS and meteorological trend variables
(Section 2.1). To avoid overparameterizing the model, the
Bayesian information criterion (BIC) was used to perform an

exhaustive search for all possible combinations of the new
variables. The set of variables with a minimum BIC, indicating
an optimal balance between the model fit and parsimony, is
preferred.66 In this study, BIC was first applied ignoring
spatiotemporal correlation for computational efficiency, as in
MLR.37,67 Residuals from the BIC-selected MLR were used to
develop a preliminary estimate of the covariance function
parameters. Then, variable selection was repeated using
geostatistical BIC, considering spatiotemporal correlation.68

Finally, residuals from the selected geostatistical model were
used to develop a refined estimate of covariance parameters,
which are then used in subsequent modeling.
The variable selection process was repeated multiple times,

with different subsets of the candidate trend variables
(covariates). Model version V1 explored the ability of
meteorological variables from POWER to explain variations
in DO. V2 evaluated the potential of ROMS output to explain
variations in DO. Finally, V3 considered POWER and ROMS
variables simultaneously. All model versions included the
spatial and temporal trends selected in Matli et al. (2018) as a
baseline, henceforth referred to as M18.39

2.4. Model Validation. Model performance and robust-
ness were assessed through a k-fold CV69 where the dataset
was divided into k groups, also known as folds. Each fold
comprised 100% (or 50%) of the observations from a
particular monitoring cruise. Each fold was removed from
the original dataset, in turn, and the remaining data were used
to estimate model parameters and predict the response variable
at the locations associated with the removed fold. The
aggregated predictions were used to evaluate the goodness of
fit (e.g., coefficient of determination, R2, and root mean square
error, RMSE).
We performed both “leave-one-cruise-out” (k = 75) and

“leave-half-cruise-out” (k = 170) CVs to assess the benefits of
having concurrent data available (as in the case of leave-half-
cruise-out). For the leave-one-cruise-out validation, we did not
remove data for years with only one (or zero) shelfwide cruise,
as at least one major cruise is needed to robustly estimate the
annual intercepts (Section 2.2). Shelfwide cruises were defined
as cruises that collect samples across the study area, as opposed
to specific transects or near-shore regions. For leave-half-
cruise-out validation, we randomly removed half of the
observations from cruises with at least two observations. We
also assessed the advantage of accounting for both
deterministic trends and spatiotemporal correlation (xβ + η)
relative to using deterministic trends only (xβ). These metrics
provided supplemental support in determining the best model
version.

2.5. Conditional Realizations. Conditional realizations
were used to quantify the uncertainty in hypoxic area estimates
from the geostatistical model.37,39,40 First, BIC-selected
variables and covariance function parameters were used to
determine a unique set of kriging weights (corresponding to
the observations) for each estimation location and each day.
Also, unconditional realizations (i.e., statistical simulations) of
the response variable were determined using the procedure
described in M18. These unconditional realizations were then
conditioned to the observed data and trends using the kriging
weights, thus producing conditional realizations.40 Simulated
grid locations with BWDO less than 2 mg/L were summed to
develop realizations of the total hypoxic extent. This procedure
was repeated 1000 times at a 3 day interval from May to
September (1985 to 2017) to calculate the mean and
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confidence intervals (CIs) of the hypoxic area. Daily estimates
of hypoxia were also averaged over a 30 day and 90 day moving
window using the procedure followed in M18.39

3. RESULTS AND DISCUSSION
3.1. Deterministic Component. The first model iteration

(V1) considers meteorological variables (from POWER), and
only the square of the mean wind speed weighted over 28 days
(WS28

2) is selected based on BIC (Table 1 and Supporting
Information SI-4). A comparison of trend coefficients and the
associated standard errors shows that, with the exception of the
time of year (T), all selected trend variables are significant (p <
0.05). However, T is still included because the higher-order
variable (i.e., T2) is significant.70 Overall, the trends explain
32.6% of the variance in BWDO, compared to 28.7% in M18
(Table 1).39

The coefficients for the selected deterministic trends
indicate patterns and suggest drivers of BWDO variability
(Table 1). Negative coefficients associated with easting (E)
and northing (N) indicate decreasing BWDO closer to the
Mississippi and Atchafalaya River outfalls. The model
quantifies an increase in BWDO with an increase in the
wind speed, which is to be expected as high wind events
promote water column mixing. Including the trend with WS28

2

reduces the coefficient (β) associated with T2 by a notable
53.6% relative to the M18 model. This indicates that the
temporal trends in M18 were partly accounting for the
seasonality in wind speeds, with lower wind speeds in mid-
summer, compared to May and October.71 Including the trend
with wind also shifts the low point in the quadratic trend with
time (T and T2) from July 24 (M18) to July 15 (Figure S6),
indicating that other biophysical factors (e.g., nutrient loading,
algal production, temperature, and so on) promote severe
hypoxia in mid-July, independent of the effects of wind speed.
The selection of WS28

2 is consistent with the influence of wind
stress (a function of the square of the wind speed) on
stratification and reoxygenation.27,28,72

The second version of the geostatistical model (V2)
considers linear and quadratic trends with ROMS BWDO
(DO′) and strength of stratification (Sstrat) instead of
meteorological variables. Both DO′ and Sstrat are selected in
this model, increasing the variance explained to 33.1% (Table
1). The coefficient for DO′ indicates that every 1 mg/L (31.25
mmol m−3) change in ROMS BWDO is predictive of a 0.12
mg/L change in observed BWDO. Furthermore, the negative

coefficient for Sstrat indicates that as stratification increases,
observed BWDO decreases further, consistent with the
importance of stratification in controlling hypoxic variabil-
ity.44,64 A 25.0% decrease in the β for T2 is observed relative to
M18, as the trends with DO′ and Sstrat capture a portion of
seasonal variation in BWDO. However, the quadratic trend
with T now has a minimum on July 24, similar to M18.
The third version (V3) considers both the ROMS and

POWER trend variables together. Model selection identifies
W28

2, DO′, and Sstrat as optimal, explaining 35.8% of the
variability in observed BWDO, outperforming V1 and V2, and
representing a 24.7% relative increase compared to M18
(Table 1). Furthermore, there is a 64.6% reduction in the
coefficient for T2 compared to M18, indicating that substantial
seasonal variability can now be attributed to the new trend
variables (particularly wind, per V1). Day-of-year temporal
trends (T and T2) are the lowest on July 15, as in V1.
However, no significant differences in other trend parameters
are observed when compared to V1, V2, and M18 (Table 1).
In addition, the annual intercepts are similar across all model
versions for most years, though the uncertainties (i.e., standard
errors) in the intercepts are typically lowest in V3 (Supporting
Information SI-5).
For all model versions, ROMS and POWER variables are

selected based on an exhaustive search. As there is significant
correlation among some candidate variables, we note that
minor changes in variables (i.e., different averaging periods for
the same meteorological variable) yield a similar performance.
For example, in V3, the wind speed weighed over 21 days
(instead of 28 days) produces an R2 of 0.355, similar to the R2

for the best V3 model (Supporting Information SI-4).
However, it is noteworthy that the precipitation, sea surface
temperature, and solar irradiance are never selected in the top
5% of models (based on the BIC score), indicating that these
factors are not strong drivers of intraseasonal hypoxic
variability.
ROMS DO′ is selected in the V2 and V3 models. However,

the β associated with DO’ (0.12) indicates limited agreement
between ROMS predictions and BWDO observations. A β of
1.0 would indicate perfect coherence, but this is not a realistic
expectation. BWDO observations are subject to environmental
microvariability, as indicated by the substantial nugget (σε

2)
component of the model variance (Section 3.2). Furthermore,
like all hypoxia models, ROMS is not expected to be a perfect
predictor of BWDO, given the uncertainties in model forcing

Table 1. Geostatistical Trend Coefficients (β) and Associated Standard Errors (σβ) for BIC-Selected Variables, and Variance
Explained by the Deterministic Component (R2)a

M18 V1 V2 V3

variable units β σβ β σβ β σβ β σβ

E km −4.4 × 10−3 4.4 × 10−4 −4.1 × 10−3 4.2 × 10−4 −3.6 × 10−3 4.2 × 10−4 −3.3 × 10−3 4.1 × 10−4

N km −8.2 × 10−3 1.7 × 10−3 −7.5 × 10−3 1.7 × 10−3 −7.9 × 10−3 1.7 × 10−3 −7.3 × 10−3 1.6 × 10−3

D m −2.3 × 10−1 1.1 × 10−2 −2.4 × 10−1 1.1 × 10−2 −2.3 × 10−1 1.1 × 10−2 −2.3 × 10−1 1.1 × 10−2

D2 m2 5.1 × 10−3 2.2 × 10−4 5.1 × 10−3 2.1 × 10−4 4.7 × 10−3 2.2 × 10−4 4.8 × 10−3 2.2 × 10−4

T day 4.6 × 10−3 3.2 × 10−3 4.6 × 10−3 3.0 × 10−3 3.1 × 10−3 2.9 × 10−3 3.1 × 10−3 2.8 × 10−3

T2 day2 2.8 × 10−4 4.9 × 10−5 1.3 × 10−4 5.2 × 10−5 2.1 × 10−4 4.6 × 10−5 9.9 × 10−5 5.0 × 10−5

WS28
2 (m/s)2 8.8 × 10−2 1.5 × 10−2 7.1 × 10−2 1.4 × 10−2

DO′ mg/L 1.2 × 10−1 1.4 × 10−2 1.2 × 10−1 1.4 × 10−2

Sstrat kg/m4 −7.1 × 10−1 1.5 × 10−1 −6.9 × 10−1 1.5 × 10−1

R2 0.287 0.326 0.331 0.358
aResults are for M18, V1 (POWER trends), V2 (ROMS trends), and V3 (POWER + ROMS trends). The units of β and σβ are mg/L over units of
the corresponding trend variable.
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and boundary conditions, among other factors, such that it will
not capture small-scale spatiotemporal variability in observa-
tions.48 At the same time, the persistence of significant trends
with day-of-year (T2), wind, and Sstrat (in model V3) suggest
that there are temporal patterns in BWDO that could
potentially be captured by ROMS through further refinement.
While ROMS DO′ is moderately correlated with BWDO
across our study period (R2 = 0.18), previous ROMS Gulf
studies have indicated potential for a higher predictive
performance (R2 > 0.3).44

3.2. Stochastic Component. A unique set of covariance
parameters is determined for each model version (Supporting
Information SI-7). The improved deterministic trends of V1−
V3 result in up to a 10% decrease in the total stochastic
variance (i.e., σε

2 + ση
2) relative to the M18 value of 3.1 mg2

L−2. This improvement is manifested as a reduction in the
partial sill (correlated stochasticity, ση

2), which accounts for
spatially and temporally correlated stochasticity. Correlated
stochasticity is reduced by up to 12% in V3 relative to M18, as
deterministic trends now explain a larger portion of the spatial
and temporal patterns in BWDO. Consistent with this
improvement, the ranges of spatial and temporal correlations
are also moderately reduced relative to M18 (Supporting
Information SI-7). At the same time, the uncorrelated
stochasticity (nugget σε

2), representing environmental micro-
variability and measurement error, is essentially constant across
all model versions (0.5 mg2 L−2), indicating noise in the
observational data that cannot be resolved through spatio-
temporal trends.
3.3. Performance Assessment. The model performance

is assessed through leave-half-cruise-out and leave-one-cruise-
out CVs. Here, we compare the performance of the
geostatistical model using trends only (xβ) versus using trends
plus spatiotemporal correlation with proximate observations
(xβ + η), also known as universal kriging.40 Including the
spatiotemporal correlation substantially improves the model
performance (Table 2) demonstrating the benefit of geo-

statistical framework. Moreover, the model performance is
substantially better for the leave-half-cruise-out validations (R2

> 0.5) than the leave-one-cruise-out validations (R2 < 0.3),
demonstrating the importance of having spatially and
temporally proximate observations for improving the universal
kriging skill. Finally, when comparing the CV metrics across
the different model versions (Table 2), we see that V3 has
consistently superior performance, indicating the efficacy of

incorporating multiple dynamic covariates into the geo-
statistical modeling framework.

3.4. Hypoxic Area Estimates and Associated Un-
certainties. Comparisons of shelfwide hypoxic area estimates
(1985−2017) across model versions show that results from V3
substantially vary from M18 in some years (Figures 1 and
S8C). These variations appear to be largely a result of the
effects of the wind speed on hypoxia dynamics (Supporting
Information SI-2). For example, 20% higher than average wind
speeds in mid-July of 2003 led to a 31% reduction of the
estimated hypoxic extent compared to M18. In contrast, a 12%
lower than average wind speed from May through mid-June of
2012 contributed to a 40% increase in hypoxic area estimates
in these months. These wind effects are consistent with those
determined by ROMS simulations, particularly for 2003
(Supporting Information SI-2).46 On average, daily estimates
of hypoxia increased by over 8% when comparing models V1
and V3 to M18 (Table 3). This suggests that including the
wind speed (squared) as a covariate in the model has a
relatively large influence on hypoxic area estimates. In contrast,
V2, which only added ROMS variables, increased the average
hypoxic area estimate by just 2% relative to M18.
The interannual variability in the hypoxic extent is assessed

by averaging daily estimates of hypoxia over the entire summer
(June−August) and the 30 day period of maximum hypoxia
(this period varies from year to year). These aggregations
(Figure 2) show that our new fusion-based (V3) estimates
exhibit generally similar patterns to M18, though there are
some notable differences. For example, summer-average
hypoxic area estimates for the salient years of 2008 and 1997
saw 22.5 and 14.3% increases in magnitude, respectively,
relative to M18 (Figure 2B). Moreover, the summer-average
estimate for 2017 increased by 89%, with a similar increase in
the 30 day maximum (Figure 2). The BWDO observations
used to estimate hypoxia for 2017 were from a single cruise on
the far west side of the study area in the last week of June. That
cruise detected substantial hypoxia in the sampled region even
though wind speeds were relatively high at the time of the
cruise. However, later in the summer, wind speeds dropped
substantially and the ROMS model results indicated a hypoxic
extent of over 30,000 km2 (Figures S2I and S8I). The fusion
model, which considers the already low BWDO at the end of
June (leading to a low intercept parameter value for V3,
Supporting Information SI-5), coupled with the trends in the
wind speed and ROMS output, produced the high fusion-
based estimate of the hypoxic area (Figure 2). This estimate is
relatively consistent with the record LUMCON midsummer
cruise measurement of 22,720 km2 in late July,73 even though
the data from this cruise are not yet available for inclusion in
our models.
The fusion-based approach (V3) results in larger average

and maximum hypoxic estimates in most years, relative to
M18. This increase was greater than 10% in 15 years for
summer-averages and in 8 years for 30 day maximum hypoxic
area. However, there were 10% or greater reductions in 3 years
and 8 years, for the summer-average and 30 day maxima,
respectively. Interestingly, the greatest reductions generally
occurred when hypoxia was mild (1988, 1992, and 2003).
Thus, the fusion-based approach appears to capture extremes
in a better way, making severe years larger and mild years
milder. This is consistent with the fact that V3 has higher
predictive skills (e.g., Table 2) and thus captures more
spatiotemporal variability in BWDO. At the same time, linear

Table 2. Performance Assessment Metrics (R2 and RMSE)
for the Leave-One-Cruise-Out and Leave-Half-Cruise-Out
CV, across the Different Model Versions Considered in This
Studya

leave-one-cruise-out
CV (xβ)

leave-one-cruise-out
CV (xβ + η)

leave-half-cruise-out
CV (xβ + η)

model R2
RMSE
(mg/L) R2

RMSE
(mg/L) R2

RMSE
(mg/L)

M18 0.133 1.890 0.223 1.734 0.570 1.271
V1 0.173 1.837 0.246 1.707 0.576 1.261
V2 0.203 1.797 0.269 1.676 0.570 1.271
V3 0.227 1.766 0.282 1.663 0.582 1.253

aResults are shown using predictions from deterministic trends only
(xβ) and from universal kriging considering both trends and
spatiotemporal correlation (xβ + η).
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trend analysis of the fusion-based estimates (performed similar
to M18) identified no significant (p = 0.43) long-term trend in
the hypoxic area over our study period, consistent with
previous studies37,45 and fairly stable levels of nutrient
loading.74

Across all models, CIs indicate substantial uncertainty,
reflecting temporal stochasticity in hypoxia dynamics that is
not fully resolved by our available BWDO data and covariate
trends (Figure 1, Table 3). In general, larger hypoxic area
estimates lead to larger 95% CIs. However, when the
uncertainty is scaled to the size of the hypoxic area, as in the
coefficient of variation (Cv), our results show that model V3
has 11% less uncertainty than M18 (Cv of 0.356 vs 0.398).
Furthermore, these reductions in Cv are found to vary based on
the sampling frequency, with reductions of up to about 40% in
months with sparse sampling (i.e., less than 30 samples per
month, Supporting Information SI-9). In July, which is
typically subject to intensive monitoring,39 the average Cv
reduction is just 6% (0.282 vs 0.299), compared to a 30%
reduction in May (0.506 vs 0.725). These results demonstrate
that the fusion approach is particularly effective in constraining
uncertainties during periods of limited sampling. The fusion
approach also reduces uncertainties in estimates of summer-
average (Table 3, Figure 2) and 30 day maximum hypoxic area
(Figure S10).
3.5. Summary and Implications. This study explores the

use of meteorological variables and process-based model
outputs as covariates within a geostatistical framework. While

a limited number of previous studies considered similar
covariates, they focused only on spatial correlation to provide
snapshot estimates at times when data were collected.38,50,51

This study considers the full spatiotemporal covariance
structure of the response variable (BWDO) and allows for
hypoxia estimation with rigorous uncertainty quantification
across time. CV metrics indicate an improvement in the model
performance because of the addition of these dynamic
covariates, including the square of wind speed weighted over
28 days and predicted DO and strength of stratification from a
hydrodynamic−biogeochemical model (ROMS).

Figure 1. Daily estimates (at 3 day intervals) of the hypoxic extent across the summer for four example years. Estimates are from model versions
V1, V2, V3, and M18. For clarity, 95% confidence intervals (CIs) are shown only for the preferred fusion model (V3) and the previous model
(M18). Vertical bands represent times of major storms over the study area.75

Table 3. Mean of Estimated Hypoxic Extent (June−August),
Mean 95% CI Width, and Mean Coefficient of Variation
(Cv) for the Different Model Versions Considered in This
Study

daily estimates summer averages

model
hypoxic area
(104 km2)

95% CI
(104 km2) Cv

95% CI
(104 km2) Cv

M18 1.346 1.800 0.398 0.802 0.167
V1 1.456 1.819 0.370 0.782 0.152
V2 1.375 1.733 0.376 0.759 0.156
V3 1.467 1.756 0.356 0.739 0.143

Figure 2. (A) Change in the estimated summer-average (June−
August) hypoxic area and associated coefficient of variance (Cv) for
the new fusion model relative to previous estimates (change = {V3 −
M18}/M18) and (B) 30 day maximum and summer-average hypoxic
extent from the new fusion model (V3) compared to M18. Error bars
represent 95% CIs for the summer mean.
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We note that there are over 400 hypoxic zones worldwide,
but few have been studied as intensively as the northern Gulf.5

The proposed approach could be readily extended to other
hypoxic systems where there are sufficient BWDO observa-
tions to define covariance parameters (>100 samples)76 and
wind speed data from local weather stations or climate models.
Hydrodynamic−biogeochemical (e.g., ROMS) modeling out-
put is a particularly valuable covariate but not explicitly
required to improve the predictive performance (as indicated
by model V1). Satellite remote sensing has also been linked to
hypoxia29 and could be considered as a potential covariate in
future studies. Including dynamic covariates is expected to be
more beneficial when assessing hypoxia in systems with limited
monitoring,77 as heavily monitored systems can be charac-
terized more directly from the observational data.78 This
expectation is supported by our results showing larger
uncertainty reductions in months with sparse sampling
(Supporting Information SI-9). Also, in our study, the available
covariates only explained about 23% of BWDO variability in
CV. If covariates can be augmented to explain additional
BWDO variability, then the benefits of the fusion-based
approach could be greater than what is demonstrated here. In
any case, by quantifying estimation uncertainty, the proposed
approach can be used to assess the efficacy of different
covariates and monitoring strategies.42,79,80

The new fusion-based estimates of hypoxic extent have
substantially lower uncertainty (i.e., coefficient of variation)
when compared to previous geostatistical estimates based on
BWDO observations and static covariates only.39 With
increased confidence in estimated hypoxic areas, including 30
day maxima, this study provides enhanced information for
tracking progress toward Gulf hypoxia reduction objectives
(see Introduction).10 The fusion-based estimates also better
capture hypoxia dynamics related to wind mixing and coastal
hydrodynamics, substantially revising our estimates of hypoxic
severity in some years and months (e.g., Figure 3). These
fusion-based estimates also go beyond the use of process-based
models alone, by assimilating BWDO observations with
ROMS output to help address model-data mismatch. At the

same time, the study indicates covariate trends in hypoxic
variability (with day-of-year, wind speed, and stratification)
that could perhaps be resolved by ROMS through further
model refinement.
The results from our study have implications for under-

standing the effects of ecosystem perturbations on econom-
ically important fisheries in the region. For example, the shrimp
fishery is the highest valued single-species fishery in the
northern Gulf and it peaks during summer months when
hypoxia is most severe. Hypoxia affects the fishery in multiple
ways, including by aggregating shrimp and fishing vessels near
the edges of the hypoxic zone, suggesting locally high catch
rates in these regions.16,81 Initial comparisons suggest that the
fusion model is generally consistent with these shifts in fleet
distribution, with shrimping activity concentrated largely in
moderately low oxygen bottom waters near the edges of the
hypoxic zone (Figure 3A). In contrast, the previous (M18)
geostatistical model does not always align as well with the
spatial structure evident in the fishery (Figure 3B).39 Because
many harvested species are highly mobile and can move
vertically in the water column,82,83 future model developments
that estimate the thickness and volume of hypoxia may also be
beneficial. Overall, fusion-based hypoxia estimates, with
enhanced accuracy and reduced uncertainty, have potential
to improve the assessment and management of impacted
coastal resources.
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Figure 3. Two week average (August 1−15, 2008) bottom DO estimates from (A) the new model (V3) and (B) Matli et al. (2018) relative to the
location of individual shrimp tows during the same period (black circles).16,39 Note that this period was selected to illustrate a time when there is
substantial variation between the two approaches.
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