Marine Modelling April 3, 2009

Fourier
Fransformation and
Finite Difference
Model

Katja Fennel

5

Outline

FFT Example

N and P in a bottle

Katja Fennel Oceanography Dalhousie University

Outline

Plan for today:

- FFT example (script: FFT_example.m)
- Finitie Difference Approximation of N and P in a bottle (script: NP_bottle.m)

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

FFT Example

fft example objective

Fourier Transformation and Finite Difference Model

Katja Fennel

Outline

FFT Example

N and P in a bottle

Building a test case:

- Build a periodic signal from two waves of different frequencies (add noise too).
- Pretend we don't know the frequencies, perform Fourier Transformation in order to recover those frequencies.
- Compare recovered frequencies with the known frequencies we chose to create our signal to begin with.

fft example

Transformation and **Finite Difference** Model

Katia Fennel

Outline

N and P in a bottle

```
n = length(t); % we have 1024 data points
f1 = 50; f2 = 120; % two frequencies: f1 and f2
% our artificial time series:
% two sine waves and random noise
y = \sin(2*pi*f1*t) + 2*sin(2*pi*f2*t) + 0.5*randn(size(t));
% 2. calculate FFT and power spectrum
Y = fft(y);
Py = Y.*conj(Y); % |Y|^2
```

% 1. Create an artificial data set

t = 0:deltat:1.023; % time vector

deltat = .001; % time step

Katja Fennel

Outline

FF1 Example

N and P in a bottle

```
% 3. plot signal and power spectrum
```

Fs = 1/deltat; % sampling frequency

f = [0:n/2-1]/n*Fs; % frequency intervals
% for plotting; only up to the Nyquist
% frequency: 1/(2*deltat) = Fs/2

Py(n/2+1:n)=[]; % chop off Fourier coeffs % at and above Nyquist frequency

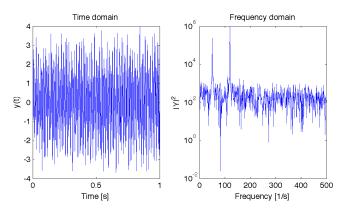
```
Fourier
Transformation and
Finite Difference
Model
```

Katja Fennel

Outline

-Fi Example

```
figure
subplot(1,2,1)
plot(t, y)
set (qca, 'FontSize', 12)
xlabel('Time [s]')
ylabel('v(t)')
title ('Time domain')
axis([0 1 -4 4])
subplot(1,2,2)
semilogy(f,Py)
set (gca, 'FontSize', 12)
xlabel('Frequency [1/s]')
vlabel('|Y|^2')
title ('Frequency domain')
axis([0 500 10^{-6}) 10^{-1})
```



Katja Fennel

Outline

FT Example

N and P in a bottle

```
>> [Peaks IFreqs] = sort(-Py);
>> abs(Peaks(1:5))
ans =
  1.0e+06 *
   1.0347 0.2416 0.0255 0.0158 0.0120 0.0062 0.0049
>> f(IFreqs(1:5))
ans =
120.1172 49.8047 50.7813 119.1406 121.0938
```

For checking out the size and frequencies of the peaks one can

use Matlab's sort command

Quantities involved in FFT

У	data
n = length(y)	number of samples
dt	time increment
Fs = 1/dt	Sampling rate
t = [0:n-1]/Fs	total time vector

Y = fft(y)	Fourier transform
abs(Y)	magnitude of Fourier coefficients
Y.*conj(Y)	power
f=[0:n-1]/n*Fs	frequency; cycles per time unit
Fs/2 = 1/2/dt	Nyquist frequency
p = 1./f	period; unit time per cycle

Note: You only need to look at the first half of the Fourier coefficients because the second half is a reflection about the Nyquist frequency.

Fourier Transformation and Finite Difference Model

Katja Fennel

Outline

FFT Example

N and P in a bottle

Phytoplankton culture, P [mmol N/m³], in a bottle with nutrient, N [mmol N/m³], and you know that uptake occurs according to Michaelis-Menten kinetics; you also know the uptake parameters approximately.

$$\frac{dP}{dt} = \mu_{max} \frac{N}{k_N + N} P - rP$$

$$\frac{dN}{dt} = -\mu_{max} \frac{N}{k_N + N} P + rP$$

Recipe: replace $\frac{dP}{dt}$ by $\frac{\Delta P}{\Delta t}$ and $\frac{dN}{dt}$ by $\frac{\Delta N}{\Delta t}$

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

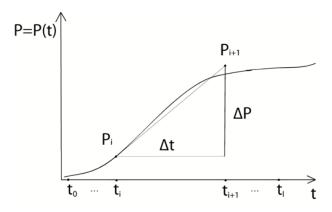
Outline

FFT Example

We want to solve for discrete time steps, t_i between t_0 and t_{end} :

$$t_i = t_0 + i \times \Delta t \quad (i = 0, \dots, I)$$

Refer to N, P at t_i as N_i, P_i .



Fourier
Transformation and
Finite Difference
Model

Katja Fennel

Outline

FFT Example

"Euler forward"

$$\begin{array}{rcl} \frac{P_{i+1}-P_{i}}{\Delta t} & = & \mu_{max}\frac{N_{i}}{k_{N}+N_{i}}P_{i}-rP_{i} \\ \\ \frac{N_{i+1}-N_{i}}{\Delta t} & = & -\mu_{max}\frac{N_{i}}{k_{N}+N_{i}}P_{i}+rP_{i} \end{array}$$

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

Outline

FFT Example

"Euler forward"

$$\begin{array}{lcl} \frac{P_{i+1}-P_{i}}{\Delta t} & = & \mu_{max}\frac{N_{i}}{k_{N}+N_{i}}P_{i}-rP_{i} \\ \frac{N_{i+1}-N_{i}}{\Delta t} & = & -\mu_{max}\frac{N_{i}}{k_{N}+N_{i}}P_{i}+rP_{i} \end{array}$$

and rearranging yields:

$$P_{i+1} = P_i + \Delta t \left(\mu_{max} \frac{N_i}{k_N + N_i} P_i - r P_i \right)$$

$$N_{i+1} = N_i + \Delta t \left(-\mu_{max} \frac{N_i}{k_N + N_i} P_i + r P_i \right)$$

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

Outline

FFT Example

N and P in a bottle

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

new

Outline

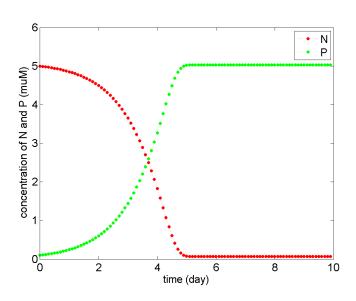
FFT Example

clear % clear the workspace before we do anything

```
% 2.) initialize state variables N and P % (and time -- only for plotting purposes) N(1) = 5.0; % in muM; N at t0 P(1) = 0.1; % in muM; P at t0 t(1) = 0; % in days; t0
```

Katja Fennel

```
% 3.) calculate numerical solution from t0 to t end
for n=2:n max
    t(n) = t(n-1) + del t;
    uptake = mu max*N(n-1)/(k N+N(n-1));
                                                      Outline
    P(n) = P(n-1) + del t*(uptake - r)*P(n-1);
                                                      FFT Example
    N(n) = N(n-1) + del t*(-uptake + r)*P(n-1);
end
% 4.) plot solution
hp=plot(t, N, 'r.:', t, P, 'q.:');
set (hp, 'MarkerSize', 16)
set (qca, 'FontSize', 16)
xlabel('time (day)')
ylabel('concentration of N and P (muM)')
legend('N','P')
```



Katja Fennel

Outline FFT Example

Land District

Katja Fennel

5

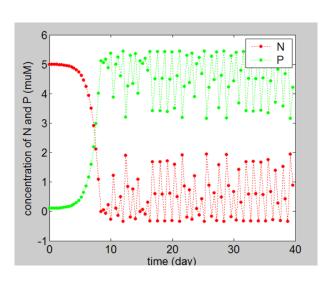
Outline

FFT Example

N and P in a bottle

So far we have used a time step of 0.1 d.

Now increase time step to 0.4 d and see what happens.



Katja Fennel

Outline

FFT Example

$$P_{i+1} = P_i + \Delta t \left(\mu_{max} \frac{N_i}{k_N + N_i} P_i - r P_i \right)$$

$$N_{i+1} = N_i + \Delta t \left(-\mu_{max} \frac{N_i}{k_N + N_i} P_i + r P_i \right)$$

Note that only concentrations from "previous" time point n are used to arrive at "next" time point (n+1).

$$C^{n+1} = f(C^n)$$
 "explicit scheme"

Think about the implications in terms of "tangent on the curve" or "control volume".

Fourier Transformation and Finite Difference Model

Katja Fennel

Outline

FFT Example

$$P_{i+1} = P_i + \Delta t \left(\mu_{max} \frac{N_i}{k_N + N_i} P_i - r P_i \right)$$

$$N_{i+1} = N_i + \Delta t \left(-\mu_{max} \frac{N_i}{k_N + N_i} P_i + r P_i \right)$$

Note that only concentrations from "previous" time point n are used to arrive at "next" time point (n+1).

$$C^{n+1} = f(C^n)$$
 "explicit scheme"

Think about the implications in terms of "tangent on the curve" or "control volume".

Wouldn't it be more "accurate" to allow C to change over the time period Δt ?

$$C^{n+1} = f(C^n, C^{n+1})$$
 "implicit scheme"

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

Outline

FFT Example

Katja Fennel

5

Outline

FFT Example

N and P in a bottle

$$C^{n+1} = f(C^n, C^{n+1})$$
 "implicit scheme"

May seem tricky, but is tractable.

Leads to a set of simultaneous equations that need to be solved for each time step (not bad in one dimension, but gets expensive for higher spatial dimensions).

Example for nutrient uptake:

$$\frac{dN}{dt} = -\mu \frac{N}{k+N} P$$

$$\frac{N^{n+1} - N^n}{\Delta t} = -\mu \frac{N^{n+1}}{k+N^n} P^n$$

Katja Fennel

5

Outline

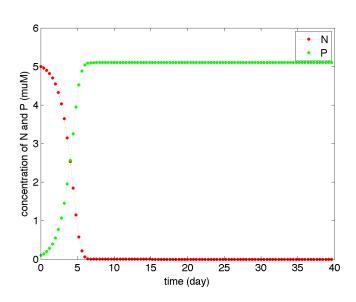
FFT Example

N and P in a bottle

 $N^{n+1} = \frac{N^n}{1 + \frac{\mu \Delta t P^n}{k + N^n}}$

A non-negative number is divided by a positive number. This scheme is positive definite.

Implement this for our example!



Katja Fennel

Outline FFT Example

Key change to make the scheme implicit

Fourier
Transformation and
Finite Difference
Model

Katja Fennel

5

```
Outline
```

FFT Example

```
% calculate numerical solution from t0 to t_end
for n=2:n_max
        t(n) = t(n-1)+del_t;
    cff = mu_max*del_t*P(n-1)/(k_N+N(n-1));
    N(n) = N(n-1)/(1+cff);
    P(n) = P(n-1) + cff*N(n);
end
```