Lab 10
 Fourier Transformation and Finite Difference Model

Handout - print version of Lecture on Marine Modelling April 3, 2009

Katja Fennel, Oceanography, Dalhousie University

1 Outline

Outline
Plan for today:

- FFT example (script: FFT_example.m)
- Finitie Difference Approximation of N and P in a bottle (script: NP_bottle.m)

2 FFT Example

fft example objective
Building a test case:

- Build a periodic signal from two waves of different frequencies (add noise too).
- Pretend we don't know the frequencies, perform Fourier Transformation in order to recover those frequencies.
- Compare recovered frequencies with the known frequencies we chose to create our signal to begin with.

fft example

```
% 1. Create an artificial data set
deltat = .001; % time step
t = 0:deltat:1.023; % time vector
n = length(t); % we have 1024 data points
f1 = 50; f2 = 120; % two frequencies: f1 and f2
% our artificial time series:
% two sine waves and random noise
y = sin(2*pi*f1*t) +2*sin(2*pi*f2*t) +0.5*randn(size(t));
% 2. calculate FFT and power spectrum
Y = fft(y);
Py = Y.*conj(Y); % |Y|^2
```

\% 3. plot signal and power spectrum

Fs = 1/deltat; \% sampling frequency
$\mathrm{f}=[0: n / 2-1] / n * F s ; \%$ frequency intervals
\% for plotting; only up to the Nyquist
\% frequency: $1 /(2$ *deltat $)=$ Fs/2
$\operatorname{Py}(n / 2+1: n)=[] ;$ o chop off Fourier coeffs
\% at and above Nyquist frequency
figure
subplot (1,2,1)
plot(t,y)
set (gca,'FontSize',12)
xlabel('Time [s]')
ylabel('y(t)')
title('Time domain')
axis([0 1 -4 4])
subplot (1,2,2)
semilogy (f, Py)
set (gca,'FontSize',12)
xlabel('Frequency [1/s]')
ylabel('|Y|^2')
title('Frequency domain')
axis([0 500 10^(-6) 10^(-1)])

For checking out the size and frequencies of the peaks one can use Matlab's sort command

```
>> [Peaks IFreqs] = sort(-Py);
>> abs(Peaks(1:5))
ans =
    1.0e+06 *
        1.0347 0.2416 0.0255 0.0158 0.0120 0.0062 0.0049
>> f(IFreqs(1:5))
ans =
120.1172 49.8047 50.7813 119.1406 121.0938
```

Note that Matlab sorts in ascending order by default (it starts with the smallest value). Since we are looking for the largest peaks (largest values in Py) we want to order starting with the largest value. We can use the simple trick of ordering -Py .

Quantities involved in FFT	
y	data
$\mathrm{n}=$ length (y)	number of samples
dt	time increment
Fs $=1 / \mathrm{dt}$	Sampling rate
$t=[0: n-1] / \mathrm{s}$	total time vector
$\begin{aligned} & Y=f f t(y) \\ & \operatorname{abs}(Y) \end{aligned}$	Fourier transform magnitude of Fourier coefficients
Y.*conj (Y)	power
$\mathrm{f}=[0: n-1] / \mathrm{n} * \mathrm{Fs}$	frequency; cycles per time unit
$\mathrm{Fs} / 2=1 / 2 / \mathrm{dt}$	Nyquist frequency

Note: You only need to look at the first half of the Fourier coefficients because the second half is a reflection about the Nyquist frequency.

3 N and P in a bottle

N and P in a bottle

Phytoplankton culture, $\mathrm{P}\left[\mathrm{mmol} \mathrm{N} / \mathrm{m}^{3}\right]$, in a bottle with nutrient, $\mathrm{N}\left[\mathrm{mmol} \mathrm{N} / \mathrm{m}^{3}\right]$, and you know that uptake occurs according to Michaelis-Menten kinetics; you also know the uptake parameters approximately.

$$
\begin{aligned}
\frac{d P}{d t} & =\mu_{\max } \frac{N}{k_{N}+N} P-r P \\
\frac{d N}{d t} & =-\mu_{\max } \frac{N}{k_{N}+N} P+r P
\end{aligned}
$$

Recipe: replace $\frac{d P}{d t}$ by $\frac{\Delta P}{\Delta t}$ and $\frac{d N}{d t}$ by $\frac{\Delta N}{\Delta t}$

Conventions:

We want to solve for discrete time steps, t_{i} between t_{0} and $t_{\text {end }}$:

$$
t_{i}=t_{0}+i \times \Delta t \quad(i=0, \cdots, I)
$$

Refer to N, P at t_{i} as N_{i}, P_{i}.

"Euler forward"

$$
\begin{aligned}
\frac{P_{i+1}-P_{i}}{\Delta t} & =\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}-r P_{i} \\
\frac{N_{i+1}-N_{i}}{\Delta t} & =-\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}+r P_{i}
\end{aligned}
$$

and rearranging yields:

$$
\begin{aligned}
P_{i+1} & =P_{i}+\Delta t\left(\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}-r P_{i}\right) \\
N_{i+1} & =N_{i}+\Delta t\left(-\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}+r P_{i}\right)
\end{aligned}
$$

N and P in a bottle

clear \% clear the workspace before we do anything new

```
% 1.) set constants
del_t = 0.1; % in days
k_N = 0.75; % in muM
mu_max = 1.2; % in days-1
r = 0.1; % in days-1
n_max = 100; % maximum number of timesteps
% 2.) initialize state variables N and P
% (and time -- only for plotting purposes)
N(1) = 5.0; % in muM; N at t0
P(1) = 0.1; % in muM; P at t0
t(1) = 0; % in days; t0
```

\% 3.) calculate numerical solution from to to t_end
for $n=2: n$ _max
$t(n)=t(n-1)+d e l _t ;$
uptake $=$ mu_max $* N(n-1) /\left(k _N+N(n-1)\right)$;
$P(n)=P(n-1)+$ del_t*(uptake $-r) * P(n-1) ;$
$N(n)=N(n-1)+$ del_t*(-uptake $+r) * P(n-1) ;$
end
\% 4.) plot solution
hp=plot(t,N,'r.:',t, P,'g.:');
set (hp,'MarkerSize',16)
set (gca,'FontSize',16)
xlabel('time (day)')
ylabel('concentration of N and $P(m u M) ')$
legend('N','P')

So far we have used a time step of 0.1 d .

Now increase time step to 0.4 d and see what happens.

$$
\begin{aligned}
P_{i+1} & =P_{i}+\Delta t\left(\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}-r P_{i}\right) \\
N_{i+1} & =N_{i}+\Delta t\left(-\mu_{\max } \frac{N_{i}}{k_{N}+N_{i}} P_{i}+r P_{i}\right)
\end{aligned}
$$

Note that only concentrations from "previous" time point n are used to arrive at "next" time point $(n+1)$.

$$
C^{n+1}=f\left(C^{n}\right) \quad \text { "explicit scheme" }
$$

Think about the implications in terms of "tangent on the curve" or "control volume".
Wouldn't it be more "accurate" to allow C to change over the time period Δt ?

$$
C^{n+1}=f\left(C^{n}, C^{n+1}\right) \quad \text { "implicit scheme" }
$$

$$
C^{n+1}=f\left(C^{n}, C^{n+1}\right) \quad \text { "implicit scheme" }
$$

May seem tricky, but is tractable.
Leads to a set of simultaneous equations that need to be solved for each time step (not bad in one dimension, but gets expensive for higher spatial dimensions).

Example for nutrient uptake:

$$
\begin{aligned}
\frac{d N}{d t} & =-\mu \frac{N}{k+N} P \\
\frac{N^{n+1}-N^{n}}{\Delta t} & =-\mu \frac{N^{n+1}}{k+N^{n}} P^{n} \\
N^{n+1} & =\frac{N^{n}}{1+\frac{\mu \Delta t P^{n}}{k+N^{n}}}
\end{aligned}
$$

A non-negative number is divided by a positive number. This scheme is positive definite.
Implement this for our example!

Key change to make the scheme implicit:

```
% calculate numerical solution from to to t_end
for n=2:n_max
    t(n) = t(n-1) +del_t;
    cff = mu_max*del_t*P(n-1)/(k_N+N(n-1));
    N(n) = N(n-1)/(1+cff);
    P(n) = P(n-1) + cff*N(n);
end
```

