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a b s t r a c t

Satellite ocean color radiometry is a powerful method to study ocean biology but the relationships
between satellite measurements and the in situ ocean properties are not well understood. Moreover, the
measurements made with one satellite sensor may not be directly compatible with similar measure-
ments from another sensor. We estimate inherent optical properties (IOPs) in the California Current by
applying empirically optimized versions of the Quasi-Analytical Algorithm (QAA) of Lee et al. (2002) to
satellite remote sensing reflectance (Rrs) from four ocean color sensors (OCTS, SeaWiFS, MODISA and
MERIS). The set of estimated IOPs includes the total absorption coefficient at 490 nm (a490),
phytoplankton absorption coefficient at 440 nm (aph440), absorption by dissolved and detrital organic
matter at 440 nm (adg440) and particle backscattering coefficient at 490 nm (bbp490). The empirical
inversion models are created by minimizing the deviations between satellite match-ups with in situ
measurements and between the estimates of individual overlapping satellite sensors. The derived
empirical algorithms were then applied to satellite Level-3 daily Rrs to create merged multi-sensor time
series of the near-surface optical characteristics in the California Current region for a time period of over
16 years (November 1996–December 2012). Due to the limited number of in situ match-ups and their
uneven distribution as well as the large errors in the satellite-derived Rrs, the uncertainty in the retrieved
IOPs is still significant and difficult to quantify. The merged time series show the dominant annual cycle
but also significant variability at interannual time scales. The ratio of adg440 to aph440 is around 1 in the
transition zone, is 41 in the coastal zone and generally o1 offshore. adg440 decreases towards south
and towards offshore. The long-term (�16 years) trend in aph440, representative of phytoplankton
biomass, shows a significant (Po0.01) increasing trend in a wide band (�500 km) along the coast and a
significant decreasing trends in the oligotrophic North Pacific gyre. The trend of increasing aph440 in the
upwelling areas off California is positively correlated with the increasing wind speed along the coast.
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1. Introduction

Oceanic phytoplankton play an important role in global carbon
and energy budgets and any changes in the concentration,
composition and turnover rates are therefore of special interest,
especially in the context of the global climate change debate.
Satellite observations of ocean color have become the most
important method of monitoring global distributions of phyto-
plankton and ocean productivity, and validating various global
climate models (McClain, 2009; Yoder et al., 2011). The primary
output product of ocean color measurements has been the con-
centration of chlorophyll-a (Chla) which is also the main input to
ocean primary productivity models (Behrenfeld and Falkowski,
1997). Operational Chla algorithms (O’Reilly et al., 1998; O’Reilly
et al., 2000) are based on the ratio of remote sensing reflectance
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Notations

a coefficient of absorption (m�1)
a490 coefficient of absorption at 490 nm (m�1)
adg Coefficient of absorption by dissolved and detrital

organic matter (m�1)
adg440 adg at 440 nm (m�1)
aph coefficient of absorption by phytoplankton (m�1)
aph440 aph at 440 nm (m�1)

aw coefficient of absorption by pure sea water (m�1)
bbp coefficient of backscattering by particles (m�1)
bbp490 bbp at 490 nm (m�1)
R2 coefficient of determination
RMA reduced major axis (regression)
RMS root mean square
Rrs remote sensing reflectance (sr�1)
Rrs412 remote sensing reflectance at 412 nm (sr�1)
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(Rrs) at blue and green wavelengths, which primarily represents a
change in the total absorption coefficient at the blue wavelength
(�440 nm). However, the total absorption at �440 nm is not
determined solely by the absorption of phytoplankton pigments,
aph(λ), but also by the absorption by colored dissolved organic
matter (CDOM), detritus, suspended solids and pure ocean water.
The relative contributions of these individual components are not
constant but vary over space and time. CDOM and detritus are
often added together and their sum is called colored detrital and
dissolved materials (CDM, Siegel et al., 2002) with the respective
absorption component adg(λ). CDOM and detritus are produced
primarily during the remineralization of the sinking particulate
organic matter (Swan et al., 2009) and CDOM is destroyed at the
surface by solar bleaching (Nelson et al., 1998). The ratio of adg(λ)
to aph(λ) is an inverse index of the proportion of autotrophic light
absorption and varies over a wide range in the world ocean.
Moreover, variations in the ratio adg(λ) to aph(λ) are causing
systematic bias in the operational Chla products (Siegel et al.,
2005; Sauer et al., 2012). It is obvious that empirical band-ratio
estimates of Chla are expected to have errors in response to the
seasonal, regional or long-term changes in the adg(λ) to aph(λ)
ratio. Estimates of phytoplankton productivity are also affected as
(1) most primary productivity models are based on Chla, and
(2) absorption by components other than aph(λ) are not contribut-
ing to primary production by phytoplankton. Therefore, instead of
using the biased Chla estimate produced by the standard band
ratio algorithms, it is more appropriate to estimate phytoplankton
absorption aph(λ) which can be converted to Chla using a locally
validated model for Chla-specific absorption coefficient. Lee et al.
(1996) proposed an algorithm for calculating phytoplankton pri-
mary productivity based on inherent optical properties (IOPs).
IOPs are properties of the medium that do not depend on the
ambient light field. As such, they are distinguished from apparent
optical properties (AOPs), such as the remote sensing reflectance
(Rrs). The so-called absorption-based productivity algorithm (Aph-
PP) replaces Chla with aph(λ) as its primary input. There are two
advantages of using aph(λ) instead of the Chla in models of net
primary productivity. First, the influence of absorption by CDM is
explicitly included in the inversion process; and second, the
uncertainty associated with Chla-specific absorption coefficient is
avoided. In addition, aph is a good index of phytoplankton
dynamics (e.g. Shang et al., 2011).

The California Current is a major and well-characterized Eastern
boundary current with monitoring programs such as CalCOFI going
back many decades as well as process oriented programs such CCE-
LTER (Ohman and Venrick, 2003). While there have been reports of a
rapid global decline in oceanic phytoplankton biomass (Boyce et al.,
2010), studies in the California Current have reported the opposite
trends: increasing turbidity (Aksnes and Ohman, 2009) and increas-
ing surface chlorophyll-a (Chla) and primary productivity in the
coastal zone (Kahru and Mitchell, 2008; Kahru et al., 2009, 2012).

The best known and most used ocean color sensor, SeaWiFS,
stopped providing data in the end of 2010 and extending
consistent ocean color time series beyond 2010 has been a
problem. Here we create satellite algorithms that are empirically
tuned to in situ datasets of inherent optical properties and
minimize the sensor to sensor differences at the same time. As
output of our optimized models we have selected the following
inherent optical properties: total absorption coefficient at 490 nm
(a490), phytoplankton absorption coefficient at 440 nm (aph440),
absorption by dissolved and detrital organic matter at 440 nm
(adg440) and particle backscattering coefficient at 490 nm
(bbp490). These are also the inputs to the Lee et al. (2011)
absorption-based productivity model where the a490 and
bbp490 values are required for the calculation of euphotic zone
depth and aph440 replaces Chla as the major input to the
production model per se. We merge satellite data from four ocean
color sensors (OCTS, SeaWiFS, MODISA and MERIS) into a unified
time series of several IOPs and evaluate their variability during the
last 16 years (1996–2012).
2. Data and methods

2.1. In situ measurements of the inherent optical properties
of seawater

In situ measurements were made on a number of cruises
that were part of the CalCOFI (from CAL9610 to CAL0304) and
CCE-LTER (P0704, P0810) programs.

The spectral backscattering coefficient, bb(z, λ), was determined
from in situ measurements with Hydroscat-6 sensors (HobiLabs,
Inc.), each with six wavebands in the visible range from 440 to
676 nm. Data were processed with the methods described by
Maffione and Dana (1997), Boss and Pegau (2001) and Allison et al.
(2010). The coefficient bb is considered to be the sum of contribu-
tions from pure water backscattering, bbw, and particle backscatter-
ing, bbp. The near-surface data (at depths less than �5 m) were
discarded because of significant fluctuations at these shallow depths
and the subsurface values were extrapolated to the surface.

The spectral particulate absorption coefficient, ap(λ), was mea-
sured with a filter-pad technique (Mitchell et al., 2002). Discrete
water samples were collected from CTD/rosette casts and filtered
onto GF/F filters. The spectrophotometric measurements on the
filters were made in the transmittance mode on freshly collected
samples. The data were acquired in the spectral range from 300 to
800 nmwith a 1 nm interval and the correction for the pathlength
amplification factor was made following Mitchell (1990). After the
ap(λ) measurement, the GF/F filter was treated with 100% metha-
nol to remove phytoplankton pigments, and the spectrophoto-
metric measurements were then taken on the “bleached” filters to
determine the spectral absorption coefficient of non-algal (detri-
tal) particles, ad(λ) (Kishino et al., 1985). Assuming that the total
particulate absorption, ap(λ), is the sum of the detrital absorption,
ad(λ), and phytoplankton absorption, aph(λ), the latter was calcu-
lated as aph(λ)¼ap(λ)�ad(λ).
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The determinations of the absorption by chromophoric
dissolved organic matter (CDOM) or gelbstoff, ag(λ), were made
following Mitchell et al. (2002). Samples of seawater were filtered
through 0.2 mm Nuclepore filters, the filtrate was collected in acid-
washed combusted glass bottles and the spectral absorption
coefficient ag(λ) was measured between 250 and 750 nm with a
spectrophotometer on freshly prepared samples using a blank of a
standard purified deionized water (Milli-Q) in 10 cm quartz cuv-
ettes. The spectra were corrected for an offset measured at 650
(75) nm, which can be attributed mainly to scattering effects. The
exponential fit was made to these spectra and a blank spectrum
was subtracted to achieve the final ag(λ) values. The sum of ag(λ)
and ad(λ) is referred to as adg(λ) and represents the sum of
absorption by detrital and dissolved organic matter. We use only
the near-surface estimates of bbp(λ), aph(λ), adg(λ), as well as
the total absorption coefficient, a(λ)¼aw(λ)+aph(λ)+adg(λ), for the
blue and green spectral wavebands (440 and 490 nm). All of the
near-surface points were within both the mixed layer and the first
optical depth. The pure water absorption values, aw(λ), were taken
from Pope and Fry (1997) and those of bbw(λ) from Morel (1974).

2.2. Study area

In order to examine various time series in different regions of
the California Current we used the grid of 3 by 4 areas (Fig. 1A)
from offshore (approximately 300–1000 km from coast) through a
transition zone (100–300 km from coast) to the coastal zone
(0–100 km from coast), and from north to south as Central
California (areas 1–3), Southern California (areas 4–6), Northern
Baja California (areas 7–9) and Southern Baja California (areas
9–12). This grid has been used in the past (e.g. Kahru and Mitchell,
2001) and derives from the work of Lynn and Simpson (1987) who
showed that the variability structure of dynamic height in the
California Current can be divided into offshore, transition and
coastal bands that are roughly parallel to the coast.

2.3. Match-ups between satellite and in situ data

The validation of satellite products using quasi-simultaneous
and spatially collocated measurements (match-ups) of satellite
and in situ data followed the general procedures of previous
studies (e.g. Kahru and Mitchell, 1999; Werdell and Bailey, 2005;
Bailey and Werdell, 2006; Antoine et al., 2008; Kahru et al., 2012).
Fig. 1. (A) Grid of 12 selected areas from northern California to the southern tip of Baja C
transition (100–300 km, areas 2, 5, 8, 11) and offshore (300–1000 km, areas 1, 4, 7, 10). Th
California and Southern Baja California, respectively. (B) Locations of the in situ match-
The latest available versions of Level-2 (i.e. processed to surface
quantities but unmapped) data from four ocean color satellite
sensors were used: 2010.0 for OCTS (1996–1997), 2010.0 for
SeaWiFS (1997–2010), 2012.0 for MODIS-Aqua (MODISA, 2002–
2012), and 3rd reprocessing for MERIS (2002–2012). We used the
full resolution (�1 km) Level-2 data for SeaWiFS and MODISA, the
GAC Level-2 (�4 km) for OCTS and the RR data (�1 km) for
MERIS. For OCTS each GAC pixel is every 4th full resolution pixel
both along and across the track of the satellite with a ground
separation of about 4 km. The MERIS RR data have approximately
the same 1 km spatial resolution as the full-resolution SeaWiFS
and MODISA data. OCTS, SeaWiFS and MODISA Level-2 data
were obtained from NASA's Ocean Color website (http://oceanco
lor.gsfc.nasa.gov/) and MERIS Level-2 data were obtained from
ESA's MERIS Catalogue and Inventory (http://merci-srv.eo.esa.int/
merci/welcome.do). For each Level-2 pixel we used the corre-
sponding Level-2 flags. A pixel was determined valid if none of the
following flags were set: ATMFAIL, LAND, HISATZEN, CLDICE,
CHLFAIL, SEAICE, NAVFAIL, HIPOL and PRODFAIL. Standard ESA
MERIS processing procedures use different flags. If any of the
following MERIS flags was set then the pixel was considered
invalid: LOW SUN, HIGH_GLINT, ICE_HAZE, SUSPECT, COASTLINE,
PCD_19, PCD_18, PCD_17, PCD_16, PCD_15, PCD_14, PCD_1_13,
CLOUD and LAND. All variables in Level-2 files were extracted
from 3�3 pixel windows centered at the pixel nearest to the
in situ sample. As satellite pixels close to cloud edges or land have
increased errors, we included only those match-ups with at least
3 valid pixels (out of 9). The maximum time difference with in situ
sample was set at 24 h; however, most match-ups were within 2 h
and had at least 7 valid pixels. The mean Rrs(λ) value of valid pixels
within the 3�3 pixel window was used as input to the QAA
model. The spatial distribution of match-ups with in situ measure-
ments of IOPs is shown in Fig. 1B.

2.4. Satellite to satellite match-ups

For a comparison of products between different satellite
sensors we created satellite to satellite match-ups plotting the
same pixel in Level-3 globally mapped 9-km images for the same
day over the California Current region. Daily Level-3 data are
binned using the best quality Level-2 data and exclude question-
able pixel values that are present in Level-2 datasets. Temporally
overlapping daily data are available from three sensors (SeaWiFS,
alifornia parallel and across the mean coastline: coastal (0–100 km, areas 3, 6, 9, 12),
e north–south bands are called Central California, Southern California, Northern Baja
ups (circles) and satellite to satellite match-ups (*).

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
http://merci-srv.eo.esa.int/merci/welcome.do
http://merci-srv.eo.esa.int/merci/welcome.do
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MODISA and MERIS). OCTS, SeaWiFS and MODISA Level-3 datasets
were downloaded from NASA's Ocean Color website (http://
oceancolor.gsfc.nasa.gov/) and MERIS Level-3 data were obtained
from ESA’s GlobColour Project at ftp://hermes.acri.fr/meris_l3.
MERIS data were remapped to the same grid as the NASA data.

The number of potential satellite-to-satellite match-ups is
orders of magnitude higher than the small number of available
match-ups with in situ IOP data. In order to have approximately
comparable weight from the in situ match-ups we reduced the
number of satellite to satellite match-ups used in the algorithm
tuning while keeping a representative set of points covering the
full range of data. We first created sensor to sensor (MODISA to
SeaWiFS in 2004, MERIS to SeaWiFS in 2004, MERIS to MODISA in
2012) match-ups for the Rrs412 band for a selected year. We then
sorted these match-ups by Rrs412 value of the first satellite sensor
(SeaWiFS in the first two comparisons and MODISA in the third
comparison), deleted the lowest ten and highest ten match-ups
and then picked every Nth match-up. N was varied to produce
approximately 30–40 match-ups. We then added all the other Rrs
bands of the same pixel and same day to create the full spectral Rrs
match-up data used as input to the QAA models. As a result, we
created a representative dataset of 34 MODISA vs. SeaWiFS match-
ups, 37 MERIS vs. SeaWiFS match-ups and 31 MERIS vs. MODISA
match-ups. The procedure allowed us to reduce the number of
satellite-to-satellite match-ups but to keep a representative range
of Rrs values while also removing the lowest and highest values
where we would expect additional between-sensor errors (Kahru
et al., 2012). The spatial distribution of these satellite-to-satellite
match-ups is shown in Fig. 1B.

2.5. Fitting the QAA model to match-ups with in situ data

The Quasi-Analytical Algorithm (QAA) developed by Lee et al.
(2002) is a method to derive the absorption and backscattering
coefficients by inverting the spectral remote-sensing reflectance,
Rrs(λ). QAA starts with the calculation of the total absorption
coefficient a(λ) at a reference wavelength and then propagates the
calculation to other wavelengths. Component absorption coeffi-
cients adg(λ) and aph(λ) are further algebraically decomposed from
the total absorption spectrum. The coefficients used in QAA were
derived using synthetic (modeled) data. Satellite estimates of Rrs
spectra contain significant errors due to problems with sensor
calibration, atmospheric correction, unresolved surface effects like
glint and foam, sensor saturation and recovery from bright targets
like clouds, the effect of sub-pixel clouds, etc. Satellite estimation
of Rrs is inherently a difficult problem due to the small signal to
noise ratio as over 90% of the signal at the top of the atmosphere is
created by the atmosphere and not by the underlying ocean (Siegel
et al., 2000). As QAA and other semi-analytic algorithms are very
sensitive to such errors, the application of such algorithms to noisy
and biased satellite data is problematic. The updated version of
QAA (version 5) as described in http://www.ioccg.org/groups/Soft
ware_OCA/QAA_v5.pdf was used here. QAA version 5 includes 10
coefficients that are estimated from modeled data or from theore-
tical considerations. We treat these 10 coefficients as tunable
parameters that can be optimized by minimizing the absolute
deviations from the measured values, with an implicit assumption
that field-measured values were error-free. We use the values of
the coefficients in the standard QAA as the starting point of the
minimization process which optimizes the values of these 10
coefficients for each of the 4 sensors, i.e. 40 coefficients in total.
For the optimization we used the Trust-Region method, a variant
of the Levenberg–Marquardt method as implemented in the
NMath 5.2 numerical libraries (http://www.centerspace.net/). As
both observed and predicted values of IOPs cover a range of
several orders of magnitude, we used log10 transformed IOP data.
After running the minimization procedure there was still residual
bias which was removed with the following empirical adjustment:
YAdjusted¼(Y� intercept)/slope, where Y is the vector of predicted
values after applying the coefficients derived in the optimization
procedure, YAdjusted is the adjusted vector of output values,
intercept and slope are respectively the intercept and slope of the
reduced major axis (RMA) regression between Y and the vector of
in situ measurements X. RMA regression is more appropriate than
the standard ordinary least squares regression as the independent
variable (either the measured in situ IOP values or the estimates
using another satellite sensor) is measured with error (Sokal and
Rohlf, 1995). The resulting sets of optimized QAA coefficients and
the coefficients of adjustment (intercept and slope) are used in the
QAA model and the procedure is called the QaaCalFit model.

2.6. Wind data

We used Cross-Calibrated Multi-Platform (CCMP) ocean surface
winds (Atlas et al., 2009) derived through cross-calibration and
assimilation of data from SSM/I, TMI, AMSR-E, SeaWinds on
QuikSCAT, and SeaWinds on ADEOS-II (http://podaac-ftp.jpl.nasa.
gov/allData/ccmp/L3.5a/). These data sets are combined with
conventional observations and with a starting estimate of the
wind field using a variational analysis method. For this study, we
used wind speed (U, m/s) Level 3.5 monthly data with 25 km
spatial resolution.

2.7. Statistical estimates of model performance

We used three statistical measures to assess the performance of
the different algorithms in comparisons between satellite products
and in situ observations (satellite to in situ match-ups) or between
satellite products of multiple sensors (satellite to satellite match-
ups). In satellite to in situ match-ups Oi is the ith observation of an
in situ variable and Pi is the corresponding predicted satellite
variable. In satellite to satellite match-ups the choice of the
observed versus predicted variable is arbitrary. All the estimates
of performance were done with log10 transformed values. The
coefficient of determination (R2) shows how well one variable can
be predicted from another. An estimate of scatter between
observation and prediction, delta, was calculated as (following
Lee et al., 2011):

RMSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AVERAGE log 10

Oi

Pi

� �� �2s
;

delta¼ ð10RMSD�1Þ � 100%

An estimate of the bias between observation and prediction (Bias)
was calculated as the median of the absolute percent error Abs
((Pi�Oi)/Oi). The median is multiplied by 100 to be expressed in
percent.
3. Results

3.1. Comparison of remote sensing reflectance from different sensors

We are fortunate to have temporally overlapping sensor pairs:
MODISA with SeaWiFS: from 4 Jul 2002 to 11 Dec 2010, MERIS
with SeaWiFS: from 1 Jul 2002 to 11 Dec 2010 and MERIS with
MODISA: from 4 Jul 2002 to 8 Apr 2012. We can therefore compare
directly the same pixel value on the same day from a pair of
sensors. Different sensors have different optical characteristics
even for the same nominal waveband, e.g. 412 nm; they have
different sensitivities, signal to noise ratios, calibration and degra-
dation histories. Additionally, different satellite orbits lead to

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
ftp://hermes.acri.fr/meris_l3
http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf
http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf
http://www.centerspace.net/
http://podaac-ftp.jpl.nasa.gov/allData/ccmp/L3.5a/
http://podaac-ftp.jpl.nasa.gov/allData/ccmp/L3.5a/
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different observation times, observation geometries, variable
influences by sun glint, solar zenith angle, and clouds. In this
paper, we do not intend to accomplish a comprehensive analysis of
the differences and errors between the various Rrs bands of the
different sensors. We show by examples that both random and
systematic differences in Rrs exist and are significant. We use these
differences and errors as a justification for designing empirical
algorithms for IOPs that are optimized for the real satellite data
and not for the ideal data that we may hope to have.

Using 2004 as an example we found nearly 440,000 same day
Rrs412 match-ups between MODISA and SeaWiFS in the California
Current region using 9-km Level-3 data and about 214,000 match-
ups between MERIS and SeaWiFS Rrs412 (Fig. 2). The approxi-
mately 2 times fewer match-ups with MERIS are at least partly due
to the narrower swath of the MERIS/ENVISAT orbit. In order to
show the central tendencies of the distributions we divided the
full range (in log10 scale) into 100 segments, found the median of
the first sensor points in each segment and the median of the
Fig. 2. Inter-sensor comparison of satellite-derived remote sensing reflectance at 412
mapped datasets, red line is the one-to-one line, yellow line is the least squares linear
dividing the full horizontal range (in log10 units) into 100 equal sections and finding m
variable. (A) MODISA versus SeaWiFS in 2004; (B) MERIS versus SeaWiFS in 2004; (C) ME
of the references to color in this figure legend, the reader is referred to the web version
corresponding second sensor points in each segment. These
median bracket points are a good approximation of the central
tendency until the values diverge at about 0.001 (�3 in log10
units). It is obvious that there is a lot of scatter in Rrs estimates of
the same day and same pixel. When these different Rrs values are
used in sensitive inversion algorithms, we can assume very
different outputs for the derived IOPs for the same day and
location. Fig. 2 shows that differences of an order of magnitude
and larger are common in Rrs, especially at lower Rrs levels which
are expected at higher levels of absorption, i.e. primarily in the
coastal zones. While the median bracket points of all the sensor
pairs are close to the one-to-one line until they diverge at low
Rrs412 values, the median MERIS Rrs412 values are significantly
below those of SeaWiFS in 2004 and especially of those of MODISA
in 2012. The differences between MERIS and MODIS increased
from 2004 to 2012. At the log10(Rrs412) value of about �2.5 MERIS
Rrs412 is only about 60% of the corresponding MODISA value of
2012 match-ups (Fig. 3). While Rrs412 of MODISA is close to that of
nm (Rrs412). Blue dots show same day match-ups between Level-3 global 9-km
regression. Small red circles are the median bracket points that were generated by
edian values for the abscissa variable and the corresponding points of the ordinate
RIS versus MODISA in 2004; (D) MERIS versus MODISA in 2012. (For interpretation
of this article.)
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SeaWiFS, the median MODISA Rrs412 is still only about 90% of the
corresponding SeaWiFS value over a wide range (Fig. 3). While the
analysis shown here uses only the 412 nm band, quite similar
differences were observed for all other bands (not shown). An
advantage of band ratio algorithms is that a large part of these
differences are correlated between Rrs bands and therefore cancels
out when band ratios are used. When using semi-analytic algo-
rithms that are sensitive to the actual Rrs values we can expect
large errors in most products due to the differences in the
estimated satellite Rrs values. In contrast, estimates of the coeffi-
cient of total absorption a490 are robust (see below) and were
predicted well with the standard QAA. Our conclusion from this
rather limited exercise is that when using satellite Rrs values in
sensitive inversion schemes like QAA, we need either remove the
bias between sensors or adjust the coefficients for each sensor. We
cannot expect compatible output from different satellite sensors
when applying models with generic coefficients to satellite Rrs
values with systematic and random bias.

3.2. Optimizing the QAA model for individual satellite sensors

We applied the standard QAA model (http://www.ioccg.org/
groups/Software_OCA/QAA_v5.pdf) to satellite Rrs data corre-
sponding to the match-ups with in situ data (Fig. 4, left columns).
For all four sensors we observed that satellite predictions of a490
by the standard QAA model corresponded very well to in situ
measurements. However, the QAA-estimated bbp490 was signifi-
cantly overestimated and the QAA-estimated aph440 was signifi-
cantly underestimated compared to in situ data. For OCTS we did
not have temporally overlapping in situ bbp490 data but the
aph440 underestimation was similar to other sensors and there-
fore we assume the same relationship. After applying empirical
tuning to the QAA coefficients and subsequent empirical adjust-
ment, we derived empirically optimized models to estimate the
selected IOPs, based on in situ match-ups (Fig. 4, right columns).
As a490 was already estimated well by the standard QAA model,
there was no improvement for a490. In fact, applying the final
algorithm resulted in insignificant deterioration in Bias (from 0 to
�1) but slight improvement in R2 and delta (Table 3, top rows). For
all other selected IOPs the optimization process increased R2,
reduced scatter (delta) and drastically reduced bias compared to
in situ match-ups. After applying the linear adjustment to remove
the remaining linear bias the final RMA regressions have the slope
of 1.0 and intercept of 0.0 (Fig. 4, right columns).
3.3. Optimizing the QAA model to reduce differences between
satellite sensors

As shown in Fig. 4, we can tune the QAA model and signifi-
cantly improve the predictions compared to in situ observations.
However, in order to create consistent time series from multiple
sensors we need algorithms that not only agree with in situ data
but also minimize differences between each other. This can be
formalized as 2 tasks: (1) minimize the differences with in situ
data; and (2) minimize the differences between the corresponding
products of different sensors. Ideally, with adequate number and
distribution of in situ match-ups over the full range of possible
values, task 2 would automatically follow from task 1. However, in
reality the distribution of in situ match-ups is limited, highly non-
uniform and most probably is not representative of the full range
of variability not just along the magnitude axis but also in terms of
other contributing factors, such as time of the year, distance from
coast, location along the north-south and/or east-west axes, etc.
Therefore, using algorithms derived solely from minimizing the
differences with a limited and inadequately distributed set of
in situ match-ups does not guarantee to get similar satellite
estimates from different sensors and will most probably lead to
systematic differences between the products of different sensors.
This expectation was confirmed by our analysis. The statistical
differences between sensors may actually increase using the
algorithms tuned to in situ data compared to the standard
algorithms. We therefore implemented a complex optimization
procedure to minimize not only the differences between in situ
and satellite data but also the differences between the modeled
data of individual satellite sensors.

In Section 2.3 we described how we created satellite to satellite
match-up datasets that have a relatively small number of well-
distributed points covering nearly the full range of Rrs412. In our
complex minimization process we included the following data-
sets: 19 in situ match-ups with MODISA, 12 in situ match-ups with
MERIS, 46 in situ match-ups with SeaWiFS, 34 MODISA vs.
SeaWiFS match-ups, 37 MERIS vs. SeaWiFS match-ups and 31
MERIS vs. MODISA match-ups. That is a total of 77 in situ match-
ups and 102 satellite to satellite match-ups. For each match-up we
evaluated the difference of 4 variables: a490, bb490, aph440 and
adg440 which make 716 pairs of comparison to be minimized. As
output, we obtained the optimal values of 30 coefficients in QAA,
i.e. 10 for each of the three overlapping sensors (SeaWiFS, MODISA
and MERIS, Table 1). As OCTS did not have simultaneous measure-
ments by other sensors, this analysis could not be applied to OCTS
and we used the coefficient values obtained from comparisons
with in situ match-ups only (Fig. 4A). The linear adjustment
coefficients (intercept and slope) are used to remove the remain-
ing linear bias in log10 space and are separate for each sensor
and IOP variable (Table 2). After applying these operations, the
final RMA regressions have a slope 1.0 and an intercept of 0.0
(Figs. 5–7). The performance of the standard QAA and the
empirically optimized QAA are compared in Table 3.

3.4. Time series of the merged multi-sensor IOPs

We applied the QaaCalFit algorithms (Tables 1 and 2) to the
daily Level-3 Rrs datasets of the four sensors (OCTS, SeaWiFS,
MODISA and MERIS). Merged daily QaaCalFit datasets of a490,
adg440, aph440 and bbp490 were created by averaging the
corresponding valid values of the individual sensors. The merged
daily QaaCalFit datasets were then composited into monthly
datasets by averaging the valid daily values over a month. While
we calculated the time series for all four IOPs, we will concentrate
on adg440 and aph440 which are of most interest in the context of
understanding the status of the ecosystem. We will not discuss the
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Fig. 4. Satellite match-ups (blue dots) after applying the standard QAA (left columns) and after the optimized and adjusted QAA (right columns). The red line is the one-to-
one line, yellow line shows the standard linear regression, and blue line shows the reduced major axis regression. (A) aph440 and adg440 for OCTS; (B) bbp490 and aph440
for SeaWiFS; (C) bbp490 and aph440 for MODISA; (D) bbp490 and aph440 for MERIS. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Optimized QAA coefficients in QaaCalFit compared to the standard QAA model.

QAA 2 1 1.2 0.9 0.015 0.74 0.2 0.8 0.002 0.6
OCTS 50.326 �35.549 �35.692 0.001 0.015 0.461 0.117 0.805 0.081 0.678
SeaWiFS 3.588 2.287 2.651 0.067 0.051 �2.574 0.727 0.354 0.004 �0.538
MODIS 1.730 0.178 �1.618 1.485 0.045 �1.691 2.207 0.053 �0.014 0.424
MERIS 1.086 �0.157 0.125 1.861 0.036 �1.189 1.452 �0.012 0.007 0.688
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time series of bbp490 as the inter-sensor compatibility produced
by the current version of QaaCalFit is not satisfactory (Table 3).
bbp490 has the lowest R2 (Sat/Sat)¼0.425 when applied to the
2004 match-up datasets between MODISA/SeaWiFS and MERIS/
SeaWiFS and the 2012 dataset between MERIS/MODISA. The lower
Table 2
Linear adjustment coefficients of the QaaCalFit model.

Sensor Variable Intercept Slope

OCTS a490 0.121 1.087
bbp490
aph440 �0.197 0.936
adg440 �0.329 0.743

SeaWiFS a490 �0.136 0.930
bbp490 �0.668 0.663
aph440 �0.399 0.824
adg440 �0.634 0.653

MODISA a490 0.059 1.072
bbp490 0.022 0.984
aph440 �0.471 0.782
adg440 �0.418 0.782

MERIS a490 �0.520 0.721
bbp490 �0.838 0.484
aph440 �0.492 0.820
adg440 �1.046 0.492

Fig. 5. Combined (SeaWiFS, MODISA, MERIS) match-ups (blue dots) of bbp490 between
row). Left column shows output from the standard QAA model, right column has outpu
MODISA vs. SeaWiFS, MERIS vs. SeaWiFS and MERIS vs. MODISA. (For interpretation of th
of this article.)
skill of the algorithms to estimate bbp490 compared to the
absorption coefficients is a consequence of their different role in
the Rrs spectrum. While bbp(λ) is closely related to the magnitude
of Rrs spectrum and is therefore more affected by residual errors in
atmospheric correction (e.g. Hu et al., 2013), the total absorption
coefficient (and aph(λ) and adg(λ)) are more related to the shape of
the Rrs spectrum with much of the noise in magnitude being
canceled out. The time series of a490 are also of less interest as they
are similar to the sum of adg440 and aph440. The mean annual
cycles of adg440 and aph440, averaged over 16 years (1996–2012),
appear to be surprisingly similar (Fig. 8). The annual maximum of
both adg440 and aph440 in the offshore regions occurs in the
winter (mostly in January). In the transition zone the annual cycles
of adg440 and aph440 are more variable, particularly that of adg440
which often has maxima in the spring. In the coastal zone both
adg440 and aph440 peak in spring to summer (March to May). The
ratio adg440 to aph440 (Fig. 8) shows an annual cycle that is quite
similar to the annual cycle of adg440: the maximum in winter in
the offshore regions, in spring in the transition zone and in spring-
summer in the coastal zone. There is a clear trend of decreasing
adg440 and the ratio of adg440 to aph440 from north to south. The
ratio of adg440 to aph440 is mostly below 1 offshore, around 1 in
the transition zone (over 1 in the north and below 1 in the south)
and above 1 in the coastal zone.
satellite estimates and in situ (top row) and between individual satellites (bottom
t from the optimized QaaCalFit. The satellite to satellite matchups have combined
e references to color in this figure legend, the reader is referred to the web version



Fig. 6. Combined (OCTS, SeaWiFS, MODISA, MERIS) match-ups (blue dots) of aph440 between satellite estimates and in situ (top row) and between individual satellites
(bottom row). Left column shows output from the standard QAA model, right column has output from the optimized QaaCalFit. The satellite to satellite match-ups have
combined MODISA vs. SeaWiFS, MERIS vs. SeaWiFS and MERIS vs. MODISA. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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For each of the 12 areas (Fig. 1B) we created time series using
spatially averaged monthly QaaCalFit datasets (Fig. 9A–C). In
addition to the strong annual cycle, some areas showed patterns
of multi-year variability. A common feature for the Central and
Southern California transition and coastal zones (areas 2, 3, 5, 6)
was a general increasing trend from 1998 until 2012 and a
subsequent drop in 2012. This pattern was evident in all three
IOPs (adg440, aph440 and bbp490) and also in the adg440 to
aph440 ratio. The southern coastal areas (Northern and Southern
Baja) did not show a similar increase. The 1997–1998 El Niño had a
dramatic effect, especially in the south.

In order to remove the dominant effects of the annual cycle we
calculated monthly anomalies by first calculating the long-term
mean values of each month and then divided the monthly values
of each pixel to the respective long-term mean value of the month.
Time series were created by averaging the anomalies in each area.
In some areas (e.g. Area 2) the time series of aph440 anomaly
seems to have a periodic component with a long period. Anomaly
plots show trends but also a sharp decrease in 2012 in most areas.

To get a more detailed spatial pattern of the potential trends we
evaluated aph440 trends and their significance for each pixel of
the mapped images using the nonparametric Sen slope estimator
(Sen, 1968). The nonparametric Mann–Kendall test was used
to evaluate the statistical significance of the trend according to
Salmi et al. (2002). Significant trend (at 99% confidence level) of
increasing aph440 in the coastal and transition zones of Central
and Southern California and of decreasing aph440 in the transition
and offshore areas of the Southern Baja areas were detected
(Fig. 10A). Similar analysis was performed for the monthly anoma-
lies of wind speed (1987–2011) that showed increasing winds
along the coast and also offshore at about 501 N (Fig. 10B).
Although we have not validated the QaaCalFit algorithm for the
North Pacific Gyre outside the California Current we extended the
evaluated area west to the Hawaiian Islands. The observed pattern
of a significant decreasing trend in aph440 anomalies is clearly
visible in the North Pacific gyre waters and is consistent with the
earlier reports on “expanding ocean deserts” (Behrenfeld et al.,
2006; Polovina et al., 2008; Kahru et al., 2012). However, we must
note that while the linear trend may be statistically significant, it
may not be the best approximation to the observed variability (as
shown by the anomaly plots). The drop in 2012 in many areas is of
special interest as it may be signaling an important change in the
environment but can also be an artifact of the satellite data.
4. Discussion

In order to be able to produce climate data records (National
Research Council, 2004) it is critical to merge data from multiple
satellite sensors and extend the time series beyond the limited



Fig. 7. Combined (OCTS, SeaWiFS, MODISA, MERIS) match-ups (blue dots) of adg440 between satellite estimates and in situ (top row) and between individual satellites
(bottom row). Left column shows output from the standard QAA model, right column has output from the optimized QaaCalFit. The satellite to satellite matchups have
combined MODISA vs. SeaWiFS, MERIS vs. SeaWiFS and MERIS vs. MODISA. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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lifetime of a single sensor. As an added benefit, merging data from
multiple sensors has the potential to improve the coverage and
decrease the sampling errors (IOCCG and Ocean-Colour Data
Merging, 2007). However, merging data from multiple sensors
also adds additional problems and can potentially introduce
artificial trends and abrupt changes associated with a shift in
available sensors (Gregg and Casey, 2010). GlobColour project of
the European Space Agency is using multiple methods to merge
water-leaving radiances or Chla from three sensors (SeaWiFS,
MERIS, and MODISA) (Maritorena et al., 2010). While the large
scale Chla distributions produced by the major ocean color mis-
sions were generally consistent over a wide range of conditions
(Morel et al., 2007; Djavidnia et al., 2010), systematic and sig-
nificant biases are found in the time series of individual sensors.
Gregg and Conkright (2001) pioneered the blending of satellite
Chla data with in situ data and Gregg et al. (2009) introduced a
method called the Empirical Satellite Radiance-In situ Data (ESRID)
that is using in situ data to reduce the discrepancy between
different sensors. Kahru et al. (2012) modified ESRID by using
local, high-resolution Level-2 match-ups and added a step of
minimizing the deviations between satellite sensors. These pre-
vious attempts at merging in situ and satellite used Chla as the
target variable. While available in situ datasets of Chla contain
thousands of records, the number of comparable, high-quality
datasets of IOPs is typically orders of magnitude smaller (Werdell
and Bailey, 2005). The advantage of estimating Chla using band
ratio models is their robustness to random errors but the dis-
advantage is their significant bias when the adg440 to aph440 ratio
changes. Estimating IOPs from satellite Rrs is fundamentally a
better approach but the disadvantage is that the semi-analytic
models used in the inversion process are sensitive to errors in the
Rrs data (less so for a490). In our analysis we explicitly acknowl-
edge the inconsistency between the Rrs products of different
sensors. The tuning of coefficients of a particular model framework
is similar to developing the GSM semianalytic model (Maritorena
et al., 2002; Maritorena and Siegel, 2005) but QAA does not
require fixed spectral shapes, as does GSM. The novelty of our
analysis is that we minimize not just the differences with in situ
data but also the differences between the outputs of the different
satellite sensors. We produced a merged time series of several IOPs
using four ocean color sensors within the framework of QAA with
tunable coefficients. We restricted our analysis to the California
Current, producing a regional model called QaaCalFit. Similar
analysis could be applied to global datasets using, for example,
the NOMAD dataset (Werdell and Bailey, 2005). It is clear that the
number of our in situ match-ups is too small and is probably not
well distributed to be representative of the real distribution of
IOPs regarding a number of factors.

By using the time series of merged ocean color satellite data we
were able to show significant changes in the California Current



Table 3
A comparison of the performance of the standard QAA model versus the optimized
QaaCalFit model as applied to match-ups with in situ measurements (Sat/Insitu)
and between different satellite sensors (Sat/Sat). R2¼coefficient of determination,
delta¼estimate of scatter, Bias¼estimate of bias. Bold numbers show improvement
of QaaCalFit over QAA.

Variable and match-up type Measure QAA QaaCalFit

a490 Sat/Insitu R2 0.741 0.754
Delta 24.8 7.7
Bias 0.0 �1.0

a490 Sat/Sat R2 0.897 0.920
Delta 16.0 14.4
Bias 0.2 �1.8

bbp490 Sat/Insitu R2 0.310 0.566
Delta 189.0 7.7
Bias 120.4 0.2

bbp490 Sat/Sat R2 0.398 0.425
Delta 68.3 64.9
Bias �3.4 �6.5

aph440 Sat/Insitu R2 0.743 0.818
Delta 88.9 10.7
Bias �37.1 0.4

aph440 Sat/Sat R2 0.629 0.790
Delta 56.6 41.3
Bias �6.4 1.3

adg440 Sat/Insitu R2 0.287 0.327
Delta 91.0 22.5
Bias 32.3 �4.2

adg440 Sat/Sat R2 0.893 0.915
Delta 40.4 34.5
Bias 15.6 15.9

Fig. 8. Mean annual cycle of the merged multi-sensor adg440, aph440 (left axis) and the r
black line shows where adg440/aph440¼1.
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during the last 16 years (1996–2012). Our merged time series is
hence twice as long as a time series using SeaWiFS data alone (e.g.
Yoder et al., 2010). We detected a statistically significant increase
in the phytoplankton biomass as estimated by the proxy variable
aph440 in the coastal and transition zones of the California
Current, consistent with past reports (Kahru et al., 2012). However,
the simple linear trend does not seem to be a good model to
describe the observed variability. It is more likely that the
apparent trend is caused by decadal variability (e.g. Martinez
et al., 2009; Di Lorenzo and Ohman, 2013). After a period of
general increase from 1998 to 2012, aph440 seems to have under-
gone a decline in 2012. This sharp decline in a number of IOPs in
2012 may be related to an unusual outbreak of salps (Salpa spp.) in
the spring of 2012 (M. Ohman, personal communication, 2012)
which was recorded as an unprecedented deposition of salp
carcasses and fecal material at the seafloor at Station M, in the
southern part of the Central California transition zone (Fig. 1A,
area 2) (Sherman and Smith, 2012). It remains to be seen if the
decline of 2012 will continue or was a temporary outlier. A factor
complicating this analysis is that after the demise of the MERIS
sensor in April, 2012 we have only one sensor (MODISA) that is
being used in the merged time series. The trend of increasing
phytoplankton biomass (Fig. 11A) in the California Current is
consistent with our previous analysis (Kahru et al., 2012) that
used Chla estimated from tuned band ratio algorithms, and is
consistent with several independent decadal time series within
California using in situ data. This increase in phytoplankton
biomass could potentially be explained by the observed increase
in upwelling-favorable winds and wind-driven coastal upwelling
(García-Reyes and Largier, 2010) and/or by the modeled predic-
tions (Rykaczewski and Dunne, 2010) showing increased nitrate
atio of adg440 to aph440 (right axis) for the grid of 12 areas (Fig. 1A). The horizontal



Fig. 9. Time series of inherent optical properties detected by the merged multi-sensor (OCTS, SeaWiFS, MODISA, MERIS) data for the grid of 12 areas (Fig. 1A). (A) adg440,
m�1; (B) aph440, m�1; (C) ratio of adg440/aph440.
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supply in upwelled waters due to a concomitant increase in deep
source waters entering the California Current resulting from
decreased ventilation of the North Pacific. Indeed, time series of
satellite-detected wind speed show increasing wind speed along
the west coast of North America (Fig. 11B). It appears that along
the California coast winds have increased mostly in the coastal and
transition bands while increased phytoplankton biomass (aph440)
occurs in a wider band into the offshore band. This is consistent
with the effects of upwelling being spread offshore by filaments
and eddies. The sign of the correlation between wind speed and
phytoplankton biomass (Chla) depends on the factor most limiting
phytoplankton growth: in light-limited areas the correlation is
negative and in nutrient limited areas the correlation is positive
(Kahru et al., 2010). It appears that increasing winds have limited
the increase in aph440 in certain areas: south of Vancouver Island
(Fig. 11, label 1) and in the northwest Pacific, at approximately
471 N; 1351 W (Fig. 11, label 2). The time series of wind speed
anomaly in the 4�3 area grid (Fig. 12) shows that the increasing
trend has been strongest in the Baja California coastal region (both
northern and southern) since about 1994 with a mean trend of
over 0.56 m s�1 per 10 years.
While this 16-year time series is long for satellite ocean color, it
is certainly too short to separate interannual and multidecadal
cycles from climate trends (Henson et al., 2010). The detection of
any apparent trend in this relatively short time series is strongly
affected by the timing of the start and end of the time series
relative to the occurrence of the rare but extremely influential
major El Niño events (Kahru and Mitchell, 2000, 2002). Since the
launch of the first ocean color sensor (CZCS) in 1978 we have had
two of these strong El Niño events (1982–1983 and 1997–1998)
but only one during the era of modern ocean color.

The mean annual cycle for absorption shows clear evidence of an
onshore-offshore gradient in seasonality. Near the coast (regions 3,
6, 9, 12) both aph440 and adg440 exhibit a strong spring peak
(shifting from March to June moving from north to south) with a
secondary autumn peak more apparent in the northern regions.
Moving offshore, this seasonal cycle is dampened with a pro-
nounced absorption minimum in August. Similar patterns were
reported by Henson and Thomas (2007), who reported maximum
variance in chlorophyll in spring/summer nearshore, shifting to
autumn/winter offshore. Similarly, Kahru and Mitchell (2001)
reported a dampening of magnitude and seasonality in CDOM



Fig. 10. Time series of aph440 anomaly detected by the merged multi-sensor (OCTS, SeaWiFS, MODISA, MERIS) data for the grid of 12 areas (Fig. 1A). Anomaly has been calculated
as the ratio of a current month value to the multi-year mean value of the particular month. Anomaly of 1 (black horizontal line) corresponds to the multi-year mean.

Fig. 11. (A) Linear trend in the monthly anomaly of aph440 (1996–2012). (B) Linear trend in the monthly anomaly of wind speed (1987–2011, m/s/year). The grid of 12
selected areas in the California Current is overlaid. Areas where the trend is not significant at the 99% confidence level are shown as white. Labels 1 and 2 point to areas
referenced in the text.
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(derived from band-ratio algorithms) for the CCS. As described in
Henson and Thomas (2007), this onshore-offshore and seasonal
progression is likely caused by the seasonal offshore migration of
eddy kinetic energy from the CCS coastal jet. Given this
interpretation, interannual changes in adg440 and aph440 would
be directly or indirectly controlled by changes in the position and
intensity of the California Current. Superimposed on this variability
are changes caused by decadal oscillations such as ENSO, PDO, and



Fig. 12. Time series of monthly wind speed anomaly using the CCMP version 3.5 data for the grid of 12 areas (Fig. 1A). Anomaly has been calculated by subtracting the long-
term mean value from the current monthly value for each pixel. Mean anomalies of the pixels were used to create time series for each area.
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NPGO (e.g. Thomas et al., 2009). This would potentially lead to the
rather complex interannual variability observed in this time series
(Fig. 9).

While the length of our time series precludes definitive
identification of trends driven by climate change, there are several
interesting features that emerge. Examining changes in aph440
(Fig. 11A), there is evidence for increasing phytoplankton biomass
throughout the coastal waters of the CCS. This is somewhat
different from similar analysis performed with band-ratio algo-
rithms (Kahru et al., 2012) which showed an increase primarily in
the central and southern CCS. There is also an increasing trend
in the ratio of adg440/aph440 (Fig. 9C). If we interpret increases in
this ratio as increasing “contamination” of band-ratio chlorophyll
estimates (Sauer et al., 2012), this would generally result in
underestimation of low values and over-estimation of high values,
potentially masking any underlying decadal trends. This reanalysis
suggests that the previously reported decadal increase in biomass
is coherent over most of the CCS from roughly 30–501 N (Fig. 11A).

Confirmation of increasing biomass extending into the Pacific
Northwest is anecdotally supported by reports of increasing
episodic blooms in that region (Du et al., 2011). The large
latitudinal gradient also suggests that this decadal pattern is a
response to either climate change or to multiple basin-scale
oscillations, since ENSO, PDO, and NPGO generally show some
latitudinal bias, with the ENSO and NPGO signal more apparent in
the southern CCS and the PDO signal more apparent in the
northern CCS. Fig. 11A also shows an increase in aph440
longitudinally at about 42–451 N. This is the approximate bound-
ary identified by Huyer et al. (2005) as the transition from light
limitation to nutrient limitation. This transition zone is probably
sensitive to changes in both nutrients and mixed layer depth,
driven by either climate change or basin-scale oscillations. Carr
and Kearns (2003) also identified the northern CCS (40–481 N) as
driven primarily by large-scale forcing, again suggesting that
the apparent increased biomass in this region is responding to
large-scale restructuring of the physical environment.

Development of semi-analytical algorithms has added benefits
besides the potential improvement of chlorophyll retrievals based
on IOPs rather than empirical relationships, since it provides the
opportunity to assess other biochemical parameters linked to
changes in IOPs. For example, McGaraghan and Kudela (2012)
previously used QAA to derive a relationship between remotely-
sensed backscatter, fluorescence line height, and bio-available
iron, while Palacios et al. (2009, 2012) derived synthetic salinity
and water masses for the Pacific Northwest using outputs from
semi-analytic inversion algorithms in statistical models. There has
also been increasing interest in the development of phytoplankton
functional type (PFT) models to derive more detailed information
than bulk chlorophyll (Moisan et al., 2012). These efforts require
both a better understanding of the errors associated with inver-
sion algorithms such as QAA, and a careful analysis of the
discrepancies between sensors and platforms. Here we provide
the baseline knowledge for this assessment in the California
Current System.
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5. Conclusions

We demonstrated that the QAA inversion algorithm, which
directly derives inherent optical properties (IOPs) from satellite
remote sensing reflectance, can be regionally optimized to mini-
mize error both within a region (the California Current System)
and across multiple ocean color sensors (OCTS, SeaWiFS, MODISA,
MERIS). IOPs provide direct estimates of changes in ocean color
linked to underlying biogeochemical properties such as phyto-
plankton biomass and the concentration of colored dissolved
organic matter. By retrieving these parameters directly, we mini-
mize errors associated with traditional band-ratio algorithms, and
separate the effects of CDM from changes in phytoplankton
biomass (chlorophyll). This analysis is an important step towards
creating Climate Data Records (CDRs), since we now have a
consistent time series spanning 16 years and multiple sensors.
The merged 16-year time series (November 1996–December 2012)
show significant changes, corroborating the previous observations
of increasing chlorophyll in much of the California Current System.
These observed trends are consistent with predictions of large-
scale restructuring of the CCS in response to increased upwelling
and/or changes in the source of upwelled waters associated with
increasing nutrient concentrations. This analysis also suggests that
the decadal positive increase in biomass may have been disrupted
in 2012 for as yet unknown reasons. Further offshore, there is a
contrasting trend of decreasing biomass in the oligotrophic sub-
tropical Pacific, also consistent with previous observations. While
direct estimates of IOPs from ocean color provide an opportunity
to derive additional biogeochemical parameters beyond chloro-
phyll, uncertainties in our estimates of IOPs are still large and
require further refinement. We demonstrate that we can minimize
the inter-sensor differences in the produced IOPs, but it is still
possible that artificial changes in the IOP time series are created by
merging products across sensors. This is a serious issue for the
development of CDRs. There is clear evidence for decadal changes
in IOPs (and therefore underlying biogeochemical parameters)
within the CCS, and that these changes are not simple linear
trends. Identification of these underlying patterns, particularly
separation of basin-scale oscillations from potential climate
change, requires both CDRs and match-ups of high-quality
in situ measurements of IOPs. To achieve this, we identify three
key requirements. First, it is extremely important that the tem-
poral shifts in sensor calibrations are continuously monitored and
corrected (Franz et al., 2007). Second, we need access to more
match-ups of high-quality in situ measurements of IOPs. Third, we
need continued access to state-of-the-art ocean color sensors.
MODISA is currently operating well beyond its originally planned
lifetime and it remains to be seen if the same quality products can
be retrieved from the VIIRS instrument launched on 2011. Without
meeting these three requirements, it will be difficult to attribute
the observed spatial and temporal changes in properties such as
CDM and chlorophyll to specific processes, or to evaluate predic-
tions for a changing coastal ocean.
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