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Abstract.
We quantify the CO2 source/sink nature of the California

Current System (CalCS) and determine the drivers and pro-
cesses behind the mean and spatiotemporal variability of the
partial pressure of CO2 (pCO2) in the surface ocean. To this
end, we analyze eddy-resolving, climatological simulations
of a coupled physical–biogeochemical oceanic model on the
basis of the Regional Oceanic Modeling System (ROMS).

In the annual mean, the entire CalCS within 800 km of
the coast and from∼ 33◦ N to 46◦ N is essentially neutral
with regard to atmospheric CO2: the model simulates an in-
tegrated uptake flux of−0.9± 3.6 Tg C yr−1, corresponding
to an average flux density of−0.05± 0.20 mol C m−2 yr−1.
This near zero flux is a consequence of an almost complete
regional compensation between (i) strong outgassing in the
nearshore region (first 100 km) that brings waters with high
concentrations of dissolved inorganic carbon (DIC) to the
surface and (ii) and a weaker, but more widespread uptake
flux in the offshore region due to an intense biological re-
duction of this DIC, driven by the nutrients that are upwelled
together with the DIC.

The air–sea CO2 fluxes vary substantially in time, both
on seasonal and sub-seasonal timescales, largely driven by
variations in surface oceanpCO2. Most of the variability in
pCO2 is associated with the seasonal cycle, with the excep-
tion of the nearshore region, where sub-seasonal variations
driven by mesoscale processes dominate. In the regions off-
shore of 100 km, changes in surface temperature are the main
driver, while in the nearshore region, changes in surface tem-
perature, as well as anomalies in DIC and alkalinity (Alk)
owing to changes in circulation, biological productivity and

air–sea CO2 fluxes dominate. The prevalence of eddy-driven
variability in the nearshore 100 km leads to a complex spa-
tiotemporal mosaic of surface oceanpCO2 and air–sea CO2
fluxes that require a substantial observational effort to deter-
mine the source/sink nature of this region reliably.

1 Introduction

The coastal ocean often has not been appropriately taken into
account in global carbon budget estimates, despite the fact
that the associated carbon fluxes are disproportionately large
with respect to the small fraction of the global ocean area that
coastal oceans occupy (e.g.,Liu et al., 2000; Borges et al.,
2005; Chavez et al., 2007; Liu et al., 2010; Regnier et al.,
2013). Global ocean models tend to be too coarse to resolve
important coastal processes and observational data are often
limited in space and time (e.g.,Laruelle et al., 2010). There-
fore, coastal air–sea CO2 fluxes are currently still relatively
poorly quantified, with considerable regional and global un-
certainties.

Coastal upwelling regions are particularly dynamic in
terms of carbon cycling as they experience extreme temporal
and spatial variability in carbon fluxes (e.g.,Friederich et al.,
2002; Cai et al., 2006; Leinweber et al., 2009; Evans et al.,
2011), further adding to the uncertainty in the coastal carbon
budget. As the upwelled water is rich in dissolved inorganic
carbon (DIC), its partial pressure of CO2 (pCO2) is very high
and can often exceed atmospheric levels, hence leading to an
outgassing of CO2. At the same time, the upwelled nutrients
stimulate phytoplankton productivity, which supports a large
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fixation and export of organic carbon (e.g.,Muller-Karger
et al., 2005). This leads to a decrease in surface oceanpCO2
and enhances the drawdown of atmospheric CO2 (e.g.,Hales
et al., 2005, 2012; Chavez and Messié, 2009). These oppos-
ing mechanisms and the highly variable ocean circulation
with a large amount of mesoscale variability render coastal
upwelling systems extremely complex with regard to carbon
cycling.

The California Current System (CalCS), one of the four
major eastern boundary upwelling systems, exhibits an intri-
cate interplay of physical and biological controls on lateral
and air–sea CO2 fluxes. On the one hand, its relatively high
level of eddy activity reduces biological productivity to lev-
els below those expected on the basis of its rate of upwelling,
leading also to a reduced vertical export of fixed carbon (Gru-
ber et al., 2011; Lachkar and Gruber, 2011). On the other
hand, filaments and other meso- and submesoscale structures
cause a substantial lateral export of organic carbon (Nagai
et al.), thereby leading to a strong decoupling between bio-
logical production and vertical carbon export (Plattner et al.,
2005).

The CalCS has been the subject of many studies investi-
gating a variety of different aspects ranging from ecosystem
vulnerability to global anthropogenic perturbations such as
ocean acidification (e.g.,Feely et al., 2008; Gruber et al.,
2012; Hauri et al., 2013) and the emergence of areas of
hypoxic oxygen concentrations (e.g.,Chan et al., 2008), to
more process-related topics such as the phenology of coastal
upwelling (e.g.,Bograd et al., 2009) and the impacts of dif-
ferent processes on biological production (e.g.,Gruber et al.,
2011; Lachkar and Gruber, 2011, 2013). However, only a few
studies have so far dealt with the source/sink nature of the
CalCS with regard to atmospheric CO2 or quantified the con-
tribution of the CalCS to the global carbon budget (Borges
et al., 2005; Cai et al., 2006; Chavez et al., 2007; Hales et al.,
2012).

The published studies have come to rather different con-
clusions with regard to whether the entire CalCS is a source
or a sink of atmospheric CO2 (see Table1). Friederich et al.
(2002) found that the area off Monterey Bay, California,
switched from being a sink of roughly−0.5 molCm−2yr−1

during weak upwelling years (El Niño) to outgassing CO2
at a rate of around 1.9 molCm−2yr−1 during strong up-
welling years (La Niña). Based on this very limited set of
observations used byFriederich et al.(2002) and other stud-
ies of temperate coastal upwelling systems,Borges et al.
(2005) suggested that upwelling systems from 30 to 60◦ N
act on average as weak sources with a mean flux density
of 0.11 molCm−2yr−1. In contrast,Cai et al.(2006) argued
that midlatitude upwelling shelves (also 30–60◦ N) are sinks
with a mean flux density of−1 molCm−2yr−1. Hales et al.
(2005), whose estimates are included in those ofCai et al.
(2006), found that the Oregon coast had a particularly strong
sink strength of−7.3 molCm−2yr−1, based on 120 days of
measurements in 2001. More recent observations from the

Oregon coast byEvans et al.(2011) support the conclusion
of this region being a sink, but they also showed that the air–
sea CO2 fluxes in this area are highly variable. In particular,
they found very highpCO2 with values exceeding 1000 µatm
in late summer to early fall, while waters in that area were
almost consistently undersaturated with respect to the atmo-
sphere in winter and spring. This led to a small annual up-
take with a mean flux density of−0.3± 6.8 molCm−2yr−1.
A similar small uptake flux was reported for the Santa Mon-
ica Bay, using a limited duration, but high frequency time
series (Leinweber et al., 2009).

In the first attempt to provide a CalCS-wide estimate
without relying on the extrapolation of measurements from
one site to the entire region,Chavez et al.(2007) col-
lected all availablepCO2 observations from the Lamont–
Doherty Earth Observatory (LDEO) database, and inferred
an essentially neutral CalCS with an outgassing flux density
of 0.03 molCm−2yr−1. This corresponds to a total loss of
0.5 TgCyr−1 to the atmosphere over the entire west coast of
the US and extending∼ 300 km offshore (first three 1◦ × 1◦

grid boxes). Using a large set of zonal cruises offshore of
Monterey Bay,Pennington et al.(2010) confirmed the nearly
balanced air–sea CO2 budget for the central part of the
CalCS, but also emphasized the existence of large onshore–
offshore gradients in the fluxes, with a tendency towards out-
gassing in the more nearshore areas and year-round uptake
offshore of∼ 52 km. The sink nature in the offshore region
is also supported by the LDEO surface ocean CO2 climatol-
ogy of Takahashi et al.(2009), which reports a net sink of
−0.8 molCm−2yr−1 for the nine 4◦ × 5◦ grid boxes that are
located roughly between 400 and 800 km offshore of the west
coast of the US.

Most recently,Hales et al.(2012) refined the estimate by
Chavez et al.(2007) using the same data but employing
a self–organizing map approach to extrapolate the observa-
tions in time and space. For the same region, i.e. the area of
the central North American Pacific continental margin (22–
50◦ N, within 370 km from the coast), they came to a rather
different result, i.e. a moderate sink of−14 TgCyr−1 for the
period from 1997 to 2005, corresponding to a flux density of
−0.66 molCm−2yr−1. They confirmed the strong onshore–
offshore differences inpCO2 and CO2 fluxes pointed out by
Pennington et al.(2010), both in terms of the annual mean
and the level of variability.

While these previous studies document the direction and
magnitude of the air–sea CO2 fluxes in different locations of
the CalCS and reveal their subseasonal to interannual vari-
ability, their lack of consistent geographic settings, the ab-
sence of sufficiently dense and spatially extended observa-
tional coverage and their differing temporal coverage hin-
ders the emergence of a synthetic view of the CalCS act-
ing as a source or a sink of atmospheric CO2. This provides
an opportunity for numerical models to complement the ob-
servational studies as they can provide a synoptic and more
complete view of the spatiotemporal variability of the air–sea
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Table 1.Summary of studies contributing to air–sea CO2 flux (FCO2) quantification in the CalCS.FCO2 has been converted to flux densities
for better intercomparison. PositiveFCO2 values indicate a source to the atmosphere, while negative values mean an uptake by the surface
ocean.

Study Type of data Spatial coverage Temporal coverage FCO2

[molCm−2yr−1]

This study Modeled ∼ 33–46◦ N,
0–800 km offshore

Climatological
simulation,
representative of
2000/2001

−0.05± 0.20
(−0.9± 3.6TgCyr−1)

Hales et al.(2012) Neural network
analysis of
underway
(LDEO
database)

North American Pacific
continental margin:
22–50◦ N, 0–370 km
offshore

1997–2005 −0.66± 0.66
(−14± 14TgCyr−1)

Evans et al.(2011) Underway and
mooring

Central Oregon midshelf:
44.5–44.8◦ N,
124.4–124.2◦ W

Aug 2007–May 2010 −0.3± 6.81

Pennington et al.(2010) Underway and
mooring

Central California:
Monterey Bay and
along CalCOFI Line 67

1997–2001 −0.08 (0–20km)2

+0.75 (20–52km)

Takahashi et al.(2009) Underway
(LDEO
database)

30–46◦ N, 120–135◦ W:
nine 4◦ × 5◦ grid boxes

1970–2007,
reference year 2000

−0.8

Leinweber et al.(2009) Mooring Southern California,
S. Monica Bay:
33.1◦ N, 118.7◦ W

Aug 5–Oct 4 2002 −0.76

Chavez et al.(2007) Underway
(LDEO
database)

Entire west coast of
the US extending
∼ 300 km offshore:
first three 1◦ × 1◦

grid boxes

1979–2004,
reference year 1995

+0.03

Cai et al.(2006) Underway Midlatitude upwelling
shelves:
30–60◦ N

Various −1.03

Borges et al.(2005) Underway Temperate coastal
upwelling
systems: 30–60◦ N

Various +0.114

Hales et al.(2005) Underway Oregon coast: 44–45◦ N May–Aug 2001:
120 days

−7.3

Friederich et al.(2002) Underway and
mooring

Central California:
Monterey Bay and
along CalCOFI Line 67

Jul 1997–Jul 1998:
El Niño
Jul 1998–Jul 1999: La
Niña

−0.3 to−0.7
(El Niño)
+1.5 to+2.2
(La Niña)

1 pCOair
2 is assumed constant at 392 µatm.2 Pennington et al. (2010) infer a near zero flux for the central California area (34.4–40.5◦ N). 3 Estimates for Northern

and Central California and Oregon are based on Friederich et al. (2002) and Hales et al. (2005).4 Estimates for the Californian coast are based on Friederich et
al. (2002).

CO2 fluxes. The models further offer the opportunity to in-
vestigate the processes underlying the mean fluxes and their
variability in considerably greater depth than currently pos-
sible with the in situ data.

In this study, we use a series of eddy-resolving simulations
from a coupled physical–biogeochemical oceanic model on
the basis of the Regional Oceanic Modeling System (ROMS)
to quantify (i) the climatological mean air–sea CO2 fluxes

and their drivers, (ii) the spatiotemporal variability of these
fluxes, and (iii) the key drivers and processes behind the
variability of these fluxes, i.e. the drivers and processes af-
fecting surface oceanpCO2. Our study shows that although
the CalCS as a whole acts on average as a very weak car-
bon sink with respect to the atmosphere, the air–sea CO2
fluxes are locally large and highly variable in space and
time. Furthermore, the present work highlights the funda-
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Fig. 1. Annual mean surfacepCO2 (a) and air–sea CO2 flux (b) as simulated in the CalCS. Positive air–sea fluxes denote an outgassing of
CO2. The superimposed black lines indicate the nine subdomains, where the northern (N), central (C) and southern (S) subdomains are all
split into a nearshore (0–100 km), a near-offshore (100–400 km) and a far-offshore (400–800 km) subdomain. The white line in panel(a)
indicates the approximate location of the MBARI/CalCOFI Line 67.

mental contrasts in the dynamics of the carbon cycle that
exist between the nearshore areas dominated by the effects
of upwelling and biological production and the regions fur-
ther offshore where variations induced by temperature play
a more prominent role. Finally, our investigation reveals that
mesoscale eddies contribute substantially to surfacepCO2
variability in the nearshore central CalCS, making it chal-
lenging to derive a synoptic and representative view of the
CO2 fluxes on the basis of the sparse observations currently
available.

2 Methods

2.1 Model details

The model used in this study is an eddy-resolving, coupled
physical–biogeochemical oceanic model of the west coast of
the US based on ROMS. The model domain covers roughly
2800 km alongshore (30◦ N–50◦ N) and 1250 km offshore
(Fig. 1), and has a curvilinear, coast-following grid with an
average grid spacing of 5 km. The model’s vertical grid con-
sists of 32 depth levels with increasing resolution towards the
surface and in the shallower nearshore regions. The phys-
ical model is based on the UCLA-ETH version of ROMS
(Marchesiello et al., 2003; Shchepetkin and McWilliams,
2005).

The biogeochemical model is a nitrogen-based nutrient-
phytoplankton-zooplankton-detritus (NPZD) model and in-
cludes a single phytoplankton group, implemented to mimic
diatom-like behavior. A comprehensive description of the
NPZD model can be found inGruber et al.(2006). We use

the same model setup and ecological parameters asGruber
et al.(2011).

An interactive carbon module was additionally imple-
mented in the model and introduces three new state variables:
dissolved inorganic carbon (DIC), alkalinity (Alk) and cal-
cium carbonate (CaCO3) (Gruber et al., 2012; Hauri et al.,
2013; Lachkar and Gruber, 2013). All of these state variables
are subject to physical transport and mixing, while CaCO3 is
furthermore allowed to sink at a constant rate of 20 mday−1.
The organic carbon cycle is linked to the organic nitrogen cy-
cle with a fixed stoichiometric C: N ratio of 106: 16 (Red-
field et al., 1963). DIC concentrations are altered by the air–
sea CO2 flux, the precipitation and dissolution of CaCO3
and the net community production, which is defined as net
primary production (NPP) minus heterotrophic respiration.
The Alk concentration is modified by the formation and re-
moval of nitrate as well as the precipitation and dissolution
of CaCO3. The precipitation of CaCO3 is linked to NPP via
a constant proportionality factor of 0.03, meaning that for
each formed mole of organic carbon, 0.03 mol of CaCO3 are
produced. CaCO3 dissolves at a rate of 0.0057 day−1 in the
water column and 0.002 day−1 in the sediments.

We lowered the production ratio for CaCO3 from the value
of 0.07 used previously byGruber et al.(2011) and Hauri
et al.(2013) to account for the fact that their resulting CaCO3
to organic carbon export ratio of 0.25 at 100 m depth was sub-
stantially larger than expected, while our new value of 0.09
is consistent with the global mean export ratio of about 0.06–
0.11 (Lee, 2001; Sarmiento et al., 2002; Jin et al., 2006). In
addition, we found that lowering the production ratio also
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yielded model-simulatedpCO2 that compared better to ob-
servations.

The surface ocean carbonate chemistry is calculated fol-
lowing the standard Ocean Carbon-Cycle Model Intercom-
parison Project (OCMIP) carbonate chemistry routines5. For
all our simulations, atmosphericpCO2 (pCOair

2 ) oscillates
seasonally around a mean value of 370 µatm, which cor-
responds approximately to the atmospheric concentration
in the years 2000 and 2001, with a seasonal amplitude of
2.9 µatm, which was taken from the NOAA Marine Bound-
ary Layer Reference6 for the mean latitude of our domain.

With the partial pressures of CO2 of atmosphere (pCOair
2 )

and surface ocean (pCOsea
2 ), the air–sea CO2 flux is com-

puted using the standard bulk formula:

FCO2 = −K0 · kw ·

(
pCOair

2 − pCOsea
2

)
, (1)

whereK0 denotes the solubility of CO2, computed using the
temperature- and salinity-dependent formulation ofWeiss
(1974), and kw is the CO2 gas transfer (piston) velocity.
The calculation of the piston velocity for steady (short-
term) winds assumes a quadratic dependence on the wind
speed (Wanninkhof, 1992), using the coefficient for long-
term winds.pCOsea

2 is calculated using DIC, Alk, tempera-
ture (T ), salinity (S) and nutrients, employing the first and
second dissociation constants of carbonic acid ofMillero
(1995), with original reference toMehrbach et al.(1973) and
as refitted byDickson and Millero(1987). Our sign conven-
tion is that positive values ofFCO2 denote an outgassing of
CO2, while negative values indicate an uptake by the surface
ocean.

2.2 Initial and boundary conditions

The model was started from rest and run for 12 yr with
monthly climatological forcing. As our model simulations
require about 5 yr for the spinup, we use model years 6–12
for analysis. For our annual mean and seasonal analyses in
Sects.3, 4, 5 and6.1, we used model output at monthly res-
olution and averaged this to obtain a climatology over 7 yr.
For the analysis of mesoscale processes in Sect.6.2, we used
2-day model output and looked at all analysis years without
averaging.

The initial and boundary conditions for our runs are as
described inHauri et al. (2013) and Lachkar and Gruber
(2013). In particular, the DIC and Alk initial and boundary
conditions were derived from the Global Ocean Data Anal-
ysis Project (GLODAP;Key et al., 2004). A seasonal cycle
was added to Alk in the surface ocean, using the regression
approach ofLee et al.(2006) and employing surface ocean
T andS. Similarly, a seasonal cycle of surface DIC was con-
structed using the monthlypCO2 climatology ofTakahashi

5http://ocmip5.ipsl.jussieu.fr/OCMIP/phase3/simulations/
NOCES/HOWTO-NOCES-3.html

6http://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html

Table 2. Summary of the sensitivity studies used to determine the
contributions of air–sea CO2 flux, biological production, CO2 sol-
ubility and circulation to totalpCO2 from the control simulation.

Simulation Properties

CTRL Control simulation
S1 No air–sea CO2 flux
S2 No air–sea CO2 flux, no biological production
S3 No air–sea CO2 flux, no biological production,

constant CO2 solubility

Calculation Implication

CTRL− S1 Contribution of air–sea CO2 flux to totalpCO2
S1− S2 Contribution of biological production to totalpCO2
S2− S3 Contribution of CO2 solubility to totalpCO2
S3 “Pure circulation”:pCO2 if only circulation existed

et al.(2006), and monthly surface Alk,T andS. The seasonal
cycles of DIC and Alk are then modeled to penetrate into the
upper thermocline, assuming that these variations are propor-
tional to the seasonal amplitude ofT at the different depths.

We slightly modified the upper ocean lateral boundary
conditions of DIC inferred from GLODAP (Lee et al., 2006;
Takahashi et al., 2006) in order to improve upon our model-
simulatedpCO2, DIC and Alk fields relative to observations
(see more on model evaluation in Sect.3). The modification
consisted of adjusting the vertical profile of DIC with an off-
set starting value of−8 mmolCm−3 at the surface, and then
tapering off linearly with density to a depth of 350 m, below
which the adjustment is zero. We determined the magnitude
of this correction from the model-simulated positive DIC
bias of about 10 mmolCm−3 in the first 10 m relative to data
collected from a coast-wide survey cruise undertaken from
May to June 2007 byFeely et al.(2008). The most likely
reason for the bias in our uncorrected boundary conditions is
that they were computed from the gridded products of GLO-
DAP andTakahashi et al.(2006), with particularly the former
being based on relatively sparse observations in the eastern
North Pacific. The magnitude of the correction is small rela-
tive to the uncertainties of GLODAP’s DIC gridded product,
with the gridding error alone exceeding 10 mmolCm−3 for
the CalCS (Key et al., 2004).

2.3 Drivers and processes

We employ two complementary approaches to quantify and
understand the causes of the spatial and temporal variability
in surface oceanpCO2 in Sects.5 and6.

In the first approach we aim to identify the role of four
different drivers, namely the state variables DIC, Alk,T

andS, in causing variations inpCO2. To this end, we used
a first-order Taylor expansion to decomposepCO2 into four
individual components representing the contributions from
changes in these four drivers. We neglect the very small
contribution arising from variations in nutrients. Following
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Lovenduski et al.(2007) andDoney et al.(2009), we sepa-
rated the DIC and Alk changes into a part driven by fresh-
water (FW) fluxes and one driven by other processes, and
combined the FW flux-induced changes in DIC and Alk with
the changes inS to form a FW flux term, thus

1pCO2 ≈
∂pCO2

∂DICs · 1DICs︸ ︷︷ ︸
1pCODIC,S

2

+
∂pCO2

∂Alks · 1Alks︸ ︷︷ ︸
1pCOAlk ,S

2

+
∂pCO2

∂T
· 1T︸ ︷︷ ︸

1pCO2
T

+
∂pCO2

∂FW
· 1FW︸ ︷︷ ︸

1pCOFW
2

, (2)

where DICs and Alks are the salinity-normalized concentra-
tions of DIC and Alk (normalized to a domain mean salinity
of 35), and where the partial derivatives describe the sensi-
tivities of pCO2 to small changes in DIC, Alk,T and FW
(after Sarmiento and Gruber, 2006, p. 329). These partial
derivatives were determined by adding a small perturbation
to each driver and recalculatingpCO2 four times with these
new values using an offline carbonate chemistry calculating
tool based on the OCMIP routines. The1 terms are the tem-
poral or spatial anomalies from an annual or domain mean,
respectively.

The second approach goes one step further by focusing on
the actual processes, i.e. the processes that alter the state vari-
ables, namely the air–sea CO2 flux, biological production,
CO2 solubility and ocean circulation. In order to identify
these processes we ran a series of sensitivity studies where
we consecutively removed their contributions. In addition,
we ran a control simulation (CTRL) with no perturbations to
be used as a reference (Table2).

We thus separate the model-simulatedpCO2 of the control
run (pCO2

Control) into the following four components:

pCO2
Control︸ ︷︷ ︸

CTRL

= pCO2
Gas ex.︸ ︷︷ ︸

CTRL−S1

+pCO2
Biology︸ ︷︷ ︸

S1−S2

+pCO2
Solubility︸ ︷︷ ︸

S2−S3

+pCO2
Circulation︸ ︷︷ ︸
S3

. (3)

In the first sensitivity study (S1) we set the air–sea CO2
flux coefficient in the model to zero, thereby preventing any
exchange of CO2 between the surface ocean and the atmo-
sphere. The difference inpCO2 between this simulation and
the control simulation, i.e. CTRL− S1, is thus the impact of
the air–sea CO2 flux onpCO2. In the second sensitivity study
(S2), we started from S1, but additionally set incoming solar
radiation in the model to zero, thereby inhibiting phytoplank-
ton growth and hence eliminating biological production of
organic and inorganic carbon. The difference S1−S2 is then
the impact of biological production onpCO2. In the third
sensitivity study (S3) we eliminated the impact of solubility,
i.e. of surface oceanT andS, by setting the CO2 solubility to
a constant value. This was achieved by settingT andS within
the solubility equations to domain mean values of 15◦C and
33.1, respectively. The difference S2− S3 is then the impact
of surface oceanT andS onpCO2. We end up with a simula-
tion S3, whose only remaining mechanism impactingpCO2
is circulation acting upon the boundary conditions of DIC
and Alk, i.e. transporting and mixing these values from the
boundaries into the interior of the domain and then also to
the surface, where they impact surface oceanpCO2.

Due to computational resource limitation, we undertook
these simulations at a slightly coarser horizontal resolution
of 15 km, using the same initial conditions and running them
for the same length as the full-resolution simulations. De-
spite the degradation in resolution, the model still manages
to represent well the major mesoscale features.

In this second approach, we implicitly make the assump-
tion that the contributions of the different processes are lin-
early additive. Given the nonlinearities of the ocean car-
bonate system (Sarmiento and Gruber, 2006), this is strictly
speaking not the case. This sequential removal of processes
is at best an approximate method that allows the estimation
of the magnitude of each term in Eq.3. However, our ex-
perience with a permuted sequence where we first inhibited
biological production and then set the air–sea CO2 flux to
zero, showed little difference, indicating that these nonlin-
earities are not substantial enough to alter our results. More-
over, this kind of approach has previously been used to great
effect to investigate similar questions (e.g.,Murnane et al.,
1999; Schmittner et al., 2013).

3 Model evaluation

A thorough model evaluation of sea surface temperature
(SST), chlorophyll, mixed layer depth (MLD), density struc-
ture and NPP for the CalCS was presented byGruber et al.
(2011) andLachkar and Gruber(2011). They found that the
model reproduces the annual mean and seasonal patterns of
chlorophyll and MLD reasonably well, but that the model has
a cold bias of roughly 1◦C compared to satellite data. Fur-
ther,Gruber et al.(2011) found an underestimation of NPP
by the model of about 41 % within 1000 km and 30 % within
100 km from the coast between 34 and 42◦ N compared to
satellite-based estimates fromKahru et al.(2009).

We extend these evaluations by comparing the model’s
simulated sea surfacepCO2 to observations from three dif-
ferent in situ data sources: (i) measurements of the fugacity
of CO2 (f CO2) from the Surface Ocean CO2 Atlas (SOCAT
Version 2;Pfeil et al., 2013), which spans the time period
from 1970 to 2011 and includes more than 220 000 obser-
vations within our model domain; (ii)pCO2 measurements
from the global surfacepCO2 (LDEO) database (Takahashi
et al., 2013), spanning the period from 1957 through 2013 for
our model domain and consisting of roughly 534 000 mea-
surements; and (iii)pCO2 data collected by the Naval Post-
graduate School and the Monterey Bay Research Aquarium
Institute (MBARI) along the California Cooperative Fish-
eries Investigations’ (CalCOFI) Line 67 with more than 7000
data points in our domain for the years from 1997 through
2001 (Collins et al., 2003). To facilitate the comparison with
the model, we first converted all data topCO2, then binned
them into 0.5◦ × 0.5◦ grid boxes and finally normalized them
to the year 2000 assuming a mean annualpCO2 increase
rate of 1.5 µatmyr−1 as used byTakahashi et al.(2006,
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Fig. 2. Seasonally averaged modeled (upper row) and observed (lower row) surfacepCO2 for winter (a; DJF), spring (b; MAM), summer
(c; JJA) and fall (d; SON). Observations arepCO2 computed from the Surface Ocean CO2 Atlas (SOCAT Version 2;Pfeil et al., 2013), the
global surfacepCO2 database (Takahashi et al., 2013) and the MBARI/CalCOFI Line 67 (Collins et al., 2003). The data were first binned to
0.5◦ × 0.5◦ grid boxes to compute a climatology, normalized to the year 2000 and then regridded to match the ROMS grid. The lower row
shows all the grid boxes with observations in them, i.e. before we applied our elimination criteria.

2009). We then regridded these binned and normalized data
to match our ROMS curvilinear grid and averagedpCO2
over each grid box. If there were any grid boxes containing
observations from different databases, we gave preference
to the SOCAT database. We evaluated our model’s perfor-
mance for nine subdomains separately, namely a nearshore
(0–100 km), a near-offshore (100–400 km) and a far-offshore
(400–800 km) subdomain (see contour lines in Fig.1). The
choice of these specific subdomains is based on the magni-
tude and offshore extent of upwelling, as well as the distinct
meridional differences in the structure of the CalCS.

Figure2 highlights that the model has reasonable to good
skills in reproducing the observed near- to offshore gradi-
ent of pCO2 for all seasons, and does particularly well in
the summer months when it captures the seasonal upwelling
signal near the coast (Fig.2c). The model also captures the
north–south gradients and its seasonal progression, particu-
larly in the offshore regions (Fig.2a, b, d). However, it does
have a tendency to overestimatepCO2 in the nearshore re-
gions, which is especially noticeable in the northern and cen-
tral subdomains in spring and summer (Fig.2b, c).

A more quantitative assessment of the model’s successes
and challenges in reproducing the observedpCO2 is offered
by the Taylor diagrams in Fig.3, which provide a summary

of how well the observed and modeledpCO2 patterns match
in terms of their spatial correlation, their root-mean-square
difference and the ratio of their standard deviations. Addi-
tionally, the diagrams show the difference between modeled
and observedpCO2 as a color-coded bias. For this analy-
sis, we used only those data that fulfilled the following cri-
teria: (i) for the annual mean analysis, only grid boxes con-
taining at least two observations from opposite seasons were
considered (i.e. DJF/JJA or MAM/SON) and (ii) for the sea-
sonal analysis, only grid boxes with two observations taken
in two different months within a season were retained. This
reduced the number of grid boxes considerably, particularly
in the nearshore region in winter and spring and offshore of
100 km. For the annual mean analysis, the number of avail-
able grid boxes is reduced by about 27% to a total of 38 477
grid boxes with averagedpCO2 observations in them.

The annual mean correlations of the spatial pattern range
between about 0.3 and 0.7 and are therefore slightly lower
than the values achieved for chlorophyll (Lachkar and Gru-
ber, 2011). Furthermore, the overall poorer performance of
the model with regard to the seasonal cycle is reminis-
cent of the generally lower seasonal correlations found for
chlorophyll, SST and mixed layer depth. However, while the
variability of chlorophyll is underestimated everywhere, the
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Table 3.Regional variability of annual mean surfacepCO2 and air–sea CO2 fluxes in the CalCS. ThepCO2 difference in the last column is
pCO2 from our study minuspCO2 from Hales et al.(2012).

Domain Surface Air–sea CO2 Integrated pCO2 pCO2
area flux density air–sea difference to

CO2 flux Hales et
al. (2012)

[km2] [molCm−2yr−1] [TgCyr−1] [µatm] [µatm]

Nearshore
north 33 781 +0.01 <0.01 350.7 33.6
central 112 973 +1.11 +1.5 385.2 3.3
south 21 681 +0.26 +0.1 366.5 25.4
total 168 435 +0.78 +1.6 375.9 11.6

Near-offshore
north 108 403 −0.49 −0.6 338.0 3.2
central 351 808 −0.53 −2.2 349.2 −8.4
south 65 365 −0.15 −0.1 365.0 4.9
total 525 576 −0.47 −3.0 348.9 −4.3

Far-offshore
north 174 720 −0.53 −1.1 352.7 n/a
central 531 430 +0.19 +1.2 374.7 n/a
south 92 230 +0.36 +0.4 381.3 n/a
total 798 380 +0.05 +0.5 370.6 n/a

CalCS total 1 492 391 −0.05± 0.20 −0.9± 3.6 363.5 n/a

model captures it fairly well forpCO2: normalized standard
deviations for all regions range between 0.4 and 2.0 with
annual means of 0.6 for the nearshore region (Fig.3c) and
around 0.8 for the offshore regions (Fig.3a, b). There ex-
ist substantial seasonal differences in the degree to which
the spatial variability is captured: while the model underes-
timates thepCO2 variability in the offshore regions in three
out of four seasons, it overestimates it in spring and fall in
the nearshore region.

Furthermore, the Taylor diagrams in Fig.3 reveal sub-
stantial regional and temporal differences in the magnitude
of the bias in surface oceanpCO2. The magnitude of over-
and underestimation is on average largest in the nearshore
0–100 km with values ranging between−22 µatm for winter
and 43 µatm for summer. Between 100 and 400 km offshore,
the bias varies between−24 µatm in winter and 14 µatm in
summer. Similarly in the 400–800 km offshore region, the bi-
ases range between−13 µatm for spring and 14 µatm for fall.
In the annual mean, the model has apCO2 bias of 7 µatm in
the nearshore subdomain, and biases of−6 and 4 µatm in the
near- and far-offshore subdomains, respectively.

The comparison of our model to the ungriddedpCO2 data
from CalCOFI Line 67 (Fig.4), provides us with more de-
tailed information about our model’s performance in simu-
lating the onshore–offshore gradient. In accordance with our
results for the whole domain, the model meanpCO2 of each
season has a positive bias with respect to the mean observed
pCO2 in the first 100 km, where the model overestimates

pCO2 by up to 300 µatm (summer), but on average agrees
very well with the data offshore of 100 km. For all four sea-
sons, the maximum value of modeledpCO2 peaks closer to
the coast than the observedpCO2, i.e. in the first 10–20 km,
and decreases with increasing distance to the coast. The ob-
servedpCO2 reaches a maximum, on average, between 20
and 50 km offshore.

To further check the model’s performance, we compared
our modeled surface oceanpCO2 to pCO2 data predicted by
the neural network model ofHales et al.(2012) (Table3).
As this data was pregridded at 0.25◦

× 0.25◦, we regridded it
to match our ROMS grid. Furthermore, we comparedpCO2
only for the 6 subdomains within 400 km of the coast, as
the Hales et al.(2012) data extend only to about 370 km
offshore. The results confirm that in the annual mean, our
model consistently overestimatespCO2 in the first 100 km,
while between 100 and 400 km, thepCO2 difference is al-
most negligible, with a slight underestimation by our model.
This is consistent with our model evaluation with the SO-
CAT, LDEO and MBARI data for our whole analysis domain
(Fig.3). Over all of these six subdomains however, the model
has a nearly negligiblepCO2 bias of−0.3 µatm compared to
data fromHales et al.(2012) (not listed in Table3).

In conclusion, our model has very good skills in modeling
the domain-wide meanpCO2 and captures the observed spa-
tial and temporal variability ofpCO2 well. In particular, our
regional model, although benefiting from the additional con-
straints provided by the lateral boundary conditions, tends
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Fig. 3. Taylor diagrams (Taylor, 2001) of modeled vs. observedpCO2 for the far-offshore(a), near-offshore(b) and nearshore(c) sub-
domains. Observations are from the Surface Ocean CO2 Atlas (SOCAT Version 2;Pfeil et al., 2013), the global surfacepCO2 database
(Takahashi et al., 2013) and the MBARI/CalCOFI Line 67 (Collins et al., 2003). The distance to the origin point (dashed lines) indicates
the modeled field’s normalized standard deviation (i.e. a value of 1 would mean a perfect agreement with the observed spatial variability).
The angle between each model point and the vertical axis represents the spatial correlation coefficient (“Pearson correlation”) for the model
vs. the observations. The distance from the observation reference point (black dot) to the model point is that model field’s central pattern
root-mean square. The color code indicates the bias of the modeled vs. the observedpCO2: positive values mean the model overestimates
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to simulate the observedpCO2 considerably better than any
typical global-scale ocean biogeochemistry model, which of-
ten have domain-wide biases of several tens of µatm (e.g.,
Wanninkhof et al., 2013). However, the model consistently
overestimatespCO2 in the nearshore 100 km, which we ver-
ified with various independent databases. We believe this
overestimation to be mainly due to deficiencies in our forc-
ing: first, due to the relatively coarse resolution of our wind
forcing (0.25◦ × 0.25◦), the wind speed may be overesti-
mated in the nearshore areas (Capet et al., 2004), which
would favor more intense coastal upwelling and elevate
nearshorepCO2 levels. Second, our use of climatological
forcing results in a nearly continuous upwelling along the
coast, while, in reality, periods of intense upwelling are fol-
lowed by relaxation periods, when ocean biology can reduce
surface oceanpCO2. Errors in our lateral boundary condi-
tions, the model’s too low levels of NPP and biases in the nu-
trient distributions may also help explain the nearshorepCO2
biases.

4 Sources and sinks for atmospheric CO2

We model the whole CalCS as a nearly balanced system
with regard to atmospheric CO2, annually taking up only
about−0.9 TgCyr−1 over the analysis domain (0–800 km
and ∼ 33–46◦ N). This corresponds to an average uptake
flux density of−0.05 molCm−2yr−1 (Table 3). This near
zero flux hides the presence of strong regional sources and
sinks (Figs.1b, 5): the whole northern subdomain acts as
a net sink of−0.46 molCm−2yr−1 (Fig. 5a), while the cen-

tral and southern subdomains are on average sources with
flux densities of 0.04 and 0.16 molCm−2yr−1, respectively
(Fig. 5b, c). In the offshore direction, the nearshore 100 km
is the strongest source, losing CO2 to the atmosphere with
a flux density of 0.78 molCm−2yr−1 (Table 3). In con-
trast, the area between 100 and 400 km is the most impor-
tant contributor to the overall sink with a flux density of
−0.47 molCm−2yr−1. Further offshore of 400 km, the sur-
face ocean is nearly neutral in the annual mean, outgassing on
average only 0.05 molCm−2yr−1. Of the individual subdo-
mains, the central nearshore CalCS between Pt. Conception,
California, and Cape Blanco, Oregon, is the strongest CO2
source, with an average flux density of 1.11 molCm−2yr−1,
whereas the central area between 100 and 400 km is one of
the strongest sink areas with−0.53 molCm−2yr−1.

In terms of seasonal variability, the strongest outgassing
occurs in summer (during the upwelling season) in the
nearshore central CalCS (Fig.5b), while further offshore in
summer outgassing is substantially reduced and there is even
an uptake in fall. This pattern is also simulated in the north-
ern area, but to a lesser degree (Fig.5a). Nearly the whole
analysis domain acts as a sink for CO2 in winter and spring,
except for the central and southern nearshore domains, which
are sources from spring until fall (Fig.5b, c).

We have not undertaken a systematic investigation of the
uncertainties associated with our modeledpCO2 and air–
sea CO2 fluxes. We did however run additional sensitiv-
ity simulations, where we varied either the boundary con-
ditions or some of the model’s parameters within their un-
certainty to get an indication of the order of magnitude of
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our model’s annual mean atmosphericpCO2 of 370 µatm.

this error. Altering the model’s DIC boundary conditions
by ±10 mmolCm−3, which corresponds to the model’s bias
in surface DIC that we established in Sect.3 by compar-
ing to data from theFeely et al.(2008) cruise, resulted in
a domain-widepCO2 change of approximately±5 µatm,
with a corresponding air–sea CO2 flux change of about
±0.2 molCm−2yr−1. Changing the CaCO3 production ratio
from 0.07 to 0.03 and the use of the set of biological param-
eters ofGruber et al.(2011) instead of those ofGruber et al.
(2006) resulted in domain-wide flux changes within the same
uncertainty range. Thus, we estimate that the uncertainty as-
sociated with our modeled annual mean flux for the whole
domain is at least±0.20 molCm−2yr−1, corresponding to an
integrated flux uncertainty of±3.6 TgCyr−1 (Table3). This
estimate does not include the effect of potentialpCO2 biases
of our model, particularly those in the nearshore regions. The
nearshore bias of around 10 µatm causes roughly an error in
the CO2 flux of 0.4 molCm−2yr−1. Thus, if we were to sub-
tract this bias uniformly from our model simulatedpCO2,
our net outgassing in the nearshore 100 km would be nearly
halved to around 0.4 molCm−2yr−1. However, we do not ap-
ply such a correction given the substantial uncertainty asso-
ciated with the determination of the model bias.

Our uncertainty estimate also does not include the poten-
tial impact of variable stoichiometric C: N ratios for phy-
toplankton growth.Martiny et al.(2013) showed that these
ratios may vary systematically, with oligotrophic gyres hav-
ing larger than Redfield ratios and nutrient-replete systems
having lower than Redfield ratios. While we do not expect a
substantial effect of such systematic variations in the C: N
ratios on the overall budget of the CalCS, they will neverthe-
less quite certainly affect the local fluxes. We would expect
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offshore and far-offshore regions. Positive values denote an out-
gassing of CO2, negative values an uptake by the surface ocean.

a larger outgassing in the nearshore regions, as the tendency
for lower than Redfield C: N ratio in such nutrient replete
systems would cause a lower carbon drawdown, permitting a
larger fraction of the upwelled carbon to escape to the atmo-
sphere. In contrast, in the oligotrophic offshore regions, we
would expect a stronger uptake of CO2 from the atmosphere,
as the higher than Redfield C: N ratio would tend to lead to
lower pCO2. Overall, we would expect a stronger onshore–
offshore gradient, but not a large change in the net flux over
the entire study region. A more quantitative assessment of
the effect of using a variable C: N ratio would require a more
detailed, separate analysis with additional sensitivity simula-
tions.

Our domain’s mean flux density of
−0.05± 0.20 molCm−2yr−1 agrees best with the re-
sults ofChavez et al.(2007), who suggested the whole west
coast of the US to act as a nearly balanced, small source
of 0.03 molCm−2yr−1. However, the flux densities of the
individual subdomains agree more with the findings ofEvans
et al. (2011), who showed that the Oregon coast (which
is to the largest part included in our northern subdomain)
acts as an annual net sink of−0.3 molCm−2yr−1, and
with the results ofPennington et al.(2010), who found that
the central California region is nearly balanced. All of the
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subdomains experience a sign change in CO2 fluxes during
the course of a year, which is consistent with the findings of
Hales et al.(2012).

In order to compare our air–sea CO2 fluxes more directly
to Hales et al.(2012), we average our results over only the
first 0–400 km. This yields an average uptake flux density of
−0.17 molCm−2yr−1, which is smaller than their result of
−0.66 molCm−2yr−1 over a similar region. However, given
the sizable errors in the estimate byHales et al.(2012) as
well as ours, the two estimates are actually statistically indis-
tinguishable. They both agree that the CalCS is essentially
neutral with regard to atmospheric CO2 or a small sink at
best.

These comparisons demonstrate that while the net CO2
flux over the entire CalCS is relatively small, the fluxes
vary strongly in space and time, in accordance with findings
from several of the previous studies (e.g.,Hales et al., 2005;
Chavez et al., 2007; Evans et al., 2011; Hales et al., 2012).

The air–sea CO2 flux pattern is almost entirely driven by
surface oceanpCO2, which exhibits strong regional differ-
ences (Fig.1a, Table3). Compared to surface oceanpCO2,
variations in atmosphericpCO2 are very small (e.g.,Komhyr
et al., 1985; Conway et al., 1994) and variations in the gas
transfer velocity and in the CO2 solubility are of secondary
importance, as they only tend to modulate the magnitude of
air–sea CO2 fluxes without influencing their sign (Eq.1).

5 Spatial variability of annual mean pCO2

To highlight the spatial variability of the annual mean surface
oceanpCO2, we subtract its domain average and consider
spatial anomalies only (Fig.6a). Two distinct features can be
identified in Fig.6a, which is very close to the pattern of the
air–seapCO2 difference (not shown), given that the domain
averagepCO2 differs little from atmosphericpCO2: (i) large
positive anomalies are found in the upwelling area along the
coast of the central CalCS, and (ii) there is a division around
38◦ N between the northern part of the model domain, which
tends to have negative anomalies, and the southern part with
positive anomalies.

The analysis of the drivers behind this pattern reveals that
this pattern is largely a result of strong spatial gradients in
DICs andT (Fig. 6b, d), with Alks having a smaller role and
FW fluxes being unimportant (Fig.6c, e). The strong north–
south gradients induced by DICs andT tend to cancel each
other substantially, so that the largely unopposed onshore–
offshore gradient of DICs becomes a prominent feature in
the annual mean distribution ofpCO2. An exception to this
general pattern is the Southern California Bight, where the
contribution of Alks is important, tending to oppose the effect
of DICs.

The identification of the processes underlying the spatial
pattern inpCO2 permits us to better understand what drives
these gradients, in particular those of the key driver DICs

(Fig. 7). This process-based separation based on the sensi-
tivity studies (Table2) reveals that the most important con-
tributions to the spatial gradients of annual meanpCO2 are
circulation and biological production (Fig.7a, b), both of
which act upon DIC and Alk. Circulation, i.e. the transport
of high DIC and Alk from the boundaries into the domain’s
interior and then to the surface, leads to high surface ocean
pCO2 values far exceeding atmosphericpCO2 over most of
the domain (Fig.7a). The high DIC in the upwelled waters
pushes surfacepCO2 up to values around 700 µatm in the up-
welling area and between 400 and 600 µatm further offshore.
In the central domain, highpCO2 values extend particularly
far offshore: values of 550 µatm can still be found around
400–500 km offshore. This large offshore extent is caused by
the intense offshore Ekman and eddy-driven transport in the
central CalCS (Nagai et al.), which is not strongly opposed
by the biological removal of DIC. The upwelled waters are
also enriched in Alk, which acts to reduce the impact of the
upwelling of DIC on surface oceanpCO2, but this effect is
substantially smaller (not shown).

The biological fixation of CO2 and the subsequent trans-
port of the fixed carbon to depth opposes the circulation ef-
fect and acts to decreasepCO2 nearly everywhere by around
160 µatm on average (Fig.7b). This biologically induced
pCO2 drawdown is generally largest in the nearshore region.
Yet, unlike physical circulation, whose effects are largest in
the upwelling area of the central CalCS and decrease with in-
creasing distance to the coast, the biologically drivenpCO2
drawdown is highest between 50 and 100 km offshore in the
central CalCS and extends farther offshore than the physical
circulation-driven maximum. This results in the biological
compensation of circulation effects being much weaker in the
first 50 km nearshore region of the central CalCS in compari-
son to the rest of the domain. The spatial decoupling between
the area of maximum upwelling and the region of maximum
biological production has been documented in previous stud-
ies of the CalCS and was linked to the large upwelling-driven
offshore fluxes of nutrients, which are not fully utilized in
the coastal upwelling zone (Gruber et al., 2011; Lachkar and
Gruber, 2011). The combined effect of circulation and bio-
logical production, which we will refer to here as the “bio-
logical loop”, is hence largest in the first 50–100 km, with
values of 500–650 µatm (Fig.7c). Offshore of 100 km, the
contribution of the biological loop is nearly homogeneous at
around 350 µatm, i.e. below atmospheric CO2.

In contrast to circulation and biology, the contribution
by the air–sea CO2 flux is comparatively small, contribut-
ing ± 30 µatm (Fig.7d). This pattern is directly tied to the
regions where the CalCS acts as a source or sink for at-
mospheric CO2 (see Fig.1b). The contribution by the pro-
cesses affecting the solubility of CO2 is somewhat larger,
amounting to spatial gradients inpCO2 of up to ±50 µatm
(Fig. 7e). This contribution very closely resembles that as-
sociated with theT driver (compare with Fig.6d). This is
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Fig. 6.SpatialpCO2 anomalies computed as the difference between in situ and domain meanpCO2. Panel(a) shows totalpCO2 anomalies
in the control simulation and panels(b–e)show the contributions of the four drivers DICs, Alks, T and FW to the total.

because variations inT dominate the variations in the CO2
solubility, while the contribution of FW is very small.

In summary, the net effect of circulation and biological
productivity, i.e. the contribution of the biological loop, con-
trols to a large extent the distribution ofpCO2, with small
differences in the spatial pattern between these two opposing
tendencies explaining much of the onshore–offshore gradi-
ent. This is because these small differences explain the spa-
tial distribution of DICs, the most important driver for the
spatial distribution ofpCO2. This also explains the very high
pCO2 values found in the 50 km wide coastal strip in the
central CalCS as well as the rapid decrease ofpCO2 with in-
creasing distance to the coast in that region (see Fig.1a). The
processes affecting solubility, i.e. primarily surface oceanT ,
explain most of the north–south gradient in surface ocean
pCO2, since the combined effect of circulation and biology
shows nearly no spatial gradient in the offshore regions, and
the air–sea CO2 flux is largely unimportant.

As pCO2 and the air–sea CO2 fluxes vary not only on
a spatial scale but show also high temporal variability, we
next investigate the drivers and processes behind the seasonal
and nonseasonal components ofpCO2 variability.

6 Temporal pCO2 variability

6.1 Seasonal variability

Surface oceanpCO2 in the CalCS varies substantially in
time with a standard deviation of up to±100 µatm in the
nearshore 0–100 km (Fig.8a). The standard deviation tapers
off quite quickly with increasing offshore distance with typ-
ical values of about 10–40 µatm in the regions further off-
shore. A good part of this variability is driven by the seasonal
cycle (Fig.8b), especially in the offshore region, where it ac-
counts for almost all of the variability.

To investigate the seasonality of surface oceanpCO2, we
subtract the annual meanpCO2 from the simulated monthly
climatology and considerpCO2 seasonal anomalies and their
drivers following the same approach used for studying the
spatial pattern. To capture the contrasting features ofpCO2
seasonality between the coastal and open ocean regions, we
analyze nearshore-averaged (less than 100 km offshore) and
offshore-averaged temporal anomalies separately. In both
the nearshore and offshore regions, positive anomalies of
pCO2 prevail during summer and early fall whereas nega-
tive anomalies are observed during the winter and in early
spring (black lines in Figs.9 and10).

The decomposition of thepCO2 seasonal anomalies into
individual contributions associated with changes in DICs,
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Fig. 7. Contributions of ocean circulation(a), biological production(b), air–sea CO2 flux (d) and CO2 solubility (e) to annual meanpCO2
as simulated in the control simulation. Panel(c) represents the contribution of the biological loop, i.e. the sum of(a) and(b) (indicated by
the green line). Positive contributions are displayed as solid lines, negative contributions as dashed lines.

Total pCO2 standard
deviation [μatm]

Seasonal pCO2 standard
deviation [μatm]

Non-seasonal pCO2
fraction of total [%]

a) b) c)

Fig. 8.TotalpCO2 standard deviation(a) computed from 2–day output spanning seven consecutive model years, and seasonalpCO2 standard
deviation(b) derived from a fitted mean over the same seven years. Panel(c) shows the fraction of the totalpCO2 variance (square of the
standard deviation) attributable to nonseasonal variability, i.e. the difference between total and seasonalpCO2 variance divided by the total
variance (shown in percent).
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Fig. 9. Monthly meanpCO2 anomalies for the offshore(a) and the nearshore(b) domains: the colored lines represent the contributions of
the four drivers DICs, Alks, T and FW to monthly meanpCO2 anomalies from the control simulation (black line).
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Fig. 10.Monthly meanpCO2 anomalies for the offshore(a) and the nearshore(b) domains: the colored lines represent the contributions of
ocean circulation, biological production, CO2 solubility and air–sea CO2 flux to monthly meanpCO2 anomalies from the control simulation
(black line).

Alks, T and FW (Fig.9) shows that the seasonal variability
of pCO2 in the two regions is driven by distinctly different
combinations, whose relative contributions to the seasonal
cycle are similar to the contributions discussed for the spa-
tial pattern. In the offshore region, the seasonal cycle is to
a very large extent caused by the seasonality ofT , i.e. by
the seasonal cycle of warming and cooling (Fig.9a). The
pCO2 variations driven by DICs tend to have an opposing
seasonal cycle, thereby flattening the simulatedpCO2 rela-
tive to that purely driven byT . In contrast, thepCO2 season-
ality in the nearshore region is caused by variations in both
T and DICs – and to a lesser degree variations in Alks and
in the FW fluxes (Fig.9b). Here, the DICs-driven variations
are about four months out of phase with those ofT , causing
primarily a phase shift of thepCO2 seasonality relative to
the purelyT -driven seasonal cycle. The seasonal cycle of the

Alks-driven component is characterized by higher modes, i.e.
further modifying the modeled seasonal cycle ofpCO2.

As was the case for the spatial distribution ofpCO2, we
can gain further insight into the working of the seasonal cy-
cle ofpCO2 by analyzing the processes behind it, i.e. by de-
termining the contributions of the air–sea CO2 flux, ocean
biology, CO2 solubility, and ocean circulation.

In the offshore domain, the processes controlling CO2
solubility contribute most to the seasonalpCO2 variabil-
ity (Fig. 10a). In this region, the contributions of circula-
tion and biology tend to nearly perfectly balance each other,
whereas the air–sea CO2 flux acts to slightly reduce the over-
all amplitude of thepCO2 seasonal cycle. In contrast, in the
nearshore region, circulation, i.e. essentially upwelling, is the
most important driver ofpCO2 seasonality (Fig.10b). Bio-
logical production tends to counteract the circulation effect
particularly in spring and early summer. Yet, this biological
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Fig. 11.Hovmöller diagrams representing nonseasonalpCO2 anomalies as a function of distance offshore, based on 2–day output spanning
seven consecutive model years. The anomalies were computed as the difference between the totalpCO2 over the seven analysis years and
a seasonal fitted mean over the same seven years. Panel(a) shows a transect at around 44◦ N, while panel(b) depicts a transect at around
36◦ N. The transects run roughly along the midlines of the northern and central subdomains, respectively.

compensation is only partial, especially during winter when
biology has little effect onpCO2. The seasonal variations in
CO2 solubility also play an important role in the nearshore
region, but are less prominent than in the offshore region. Fi-
nally, similarly to its role in the offshore region, the air–sea
CO2 flux acts throughout the year to dampen the seasonal
cycle ofpCO2.

In conclusion, the simulated seasonality ofpCO2 emerges
from the degree of compensation between the solubility-
drivenpCO2 variations associated with the seasonal cooling
and heating of the surface waters as well as the combined
circulation- and biology-driven variations affecting surface
ocean DICs and hencepCO2. In the offshore region, the
solubility-driven variations clearly dominate, while circula-
tion/biology can only dampen the seasonality somewhat. In
the nearshore regions, the circulation/biology-driven varia-
tions are of nearly the same amplitude, but out of phase, lead-
ing to a complex seasonal cycle inpCO2.

6.2 Mesoscale variability

Figure 8 highlights that although the seasonal component
accounts for most of the totalpCO2 variability in the off-
shore regions, a substantial fraction of the total variability in
the nearshore regions is driven by the nonseasonal compo-

nent (Fig.8c, shown in percent). Our model results demon-
strate that the nonseasonal component is the dominant vari-
ability mode in the first 100–200 km offshore of the central
CalCS, explaining up to 70 % of the totalpCO2 variability
(Fig. 8c). Most of this variability is driven by mesoscale ac-
tivity, which is more intense in the upwelling regions due
to stronger baroclinic instabilities. To further investigate the
eddy-driven component of our modeledpCO2 variability, we
analyze the nonseasonalpCO2 component as a function of
time and offshore distance (Fig.11): a comparison of the
northern and central offshore transects confirms that the ac-
tivity attributable to mesoscale and nonseasonal processes is
much more prominent in the central area (Fig.11b), which
displays year-round strong eddy activity often reaching out
up to 200 km offshore, whereas in the north (Fig.11a) the
eddy activity is detectable only on a seasonal timescale, start-
ing in late summer or early fall. In general, for both domains,
strong offshore transport occurs most frequently around the
middle of the year. We do not show any transects for the
southern subdomain, as any activity attributable to mesoscale
eddies was negligible there compared to the other two sub-
domains.

This high variability associated with eddy activity, which
is especially pronounced in the nearshore area, leads to
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relatively short temporal and spatial decorrelation scales, re-
quiring relatively dense sampling in time and space in or-
der to fully capture the truepCO2 signal. In the open ocean,
Jones et al.(2012) showed thatpCO2 can be correlated over
distances of several hundred kilometers, but pointed out that
these scales are much shorter in the coastal ocean, perhaps
as short as a few tens of kilometers in space and from a few
days to weeks in time.

Without a full Observing System Simulation Experiment,
we are not in the position to make accurate recommenda-
tions with regard to how the current network would have
to be expanded to capture the mean flux and its variability
with good confidence. Nevertheless, we can make some qual-
itative, general statements, based on our model-based expe-
rience. First, the presently available observations are likely
sufficient to estimate the domain-wide climatological annual
mean air–sea CO2 flux, as indicated by the relatively good
agreement between the most recent estimates. Second, the
current network is with good confidence insufficient to de-
termine variability in time and space around this mean flux.
In order to achieve this, the network would mainly need to
be expanded in the first 100 km, where the short temporal
and spatial decorrelation length scales require a denser cov-
erage ofpCO2 and air–sea CO2 flux measurements. It would
furthermore be highly desirable to have a more complete lat-
itudinal coverage of the nearshore area of the entire west
coast of the US, whose current observational coverage is at
best fragmentary. To this end, alongshore underway cruises,
rather than moored stations, may provide the most adequate
means of measuringpCO2 within this extended area of in-
terest.

Given that our model is forced with monthly climatolo-
gies at the surface and at the lateral boundaries, the frac-
tion of nonseasonal variability is likely underestimated in
our simulations. This is because neither long-term variabil-
ity such as interannual or -decadal variability nor very high
frequency variability associated with weather systems are
included in our forcing. Sub-mesoscale processes like fila-
ments and fronts, which cannot be properly resolved at our
model resolution, may further lead to an underestimation of
the level of nonseasonalpCO2 variability in our model. We
thus refer to a future study for a more detailed assessment
of the required sampling density in order to fully capture
the true variability ofpCO2 and the associated air–sea CO2
fluxes.

7 Discussion

Several questions emerge from our finding that the strong
sources and sinks within the CalCS sum up to a nearly
balanced system overall with regard to atmospheric CO2.
First, does this near complete spatial compensation occur by
chance, or are there some underlying mechanisms at play?
Second, if such underlying mechanisms exist, how might

they control the air–sea CO2 balance under future climate
change? Third, what is the contribution of the oceanic uptake
of anthropogenic CO2 to the overall source/sink balance?
Fourth, how do the air–sea CO2 fluxes within the CalCS com-
pare to fluxes elsewhere, and in particular, how do these re-
sults fit into the global picture?

Our analysis of the mechanisms underlying the annual
mean air–sea CO2 fluxes reveals that the near complete
spatial compensation is a result of ocean productivity very
closely compensating the effect of ocean circulation on the
air–sea CO2 flux. This compensation is not fortuitous, as
these two processes are fundamentally linked to each other.
This is because they represent the two components of the bi-
ological loop, i.e. the downward component, which is usually
referred to as the biological pump (Volk and Hoffert, 1985)
and is largely caused by the downward export of organic mat-
ter, and the upward component driven by the upward mixing
and transport of the DIC- and Alk-rich deeper waters to the
surface (Gruber and Sarmiento, 2002; Sarmiento and Gruber,
2006). As the upward component tends to control also the
supply of the limiting nutrient to the near surface ocean, and
hence also determines to a large degree the magnitude of bio-
logical productivity, the upward and downward components
of the biological loop are strongly coupled with each other.
The efficiency of the biological pump, i.e. the efficiency with
which the upward supplied limiting nutrient is biologically
taken up and exported downward again, is a good indicator of
the strength of this linkage (Sarmiento and Gruber, 2006). In
the CalCS, where nitrate tends to be the limiting nutrient (Ep-
pley and Peterson, 1979), the nitrate use efficiency turns out
to be very high, as evidenced by the near complete consump-
tion of nitrate in the offshore region. This implies also a very
high efficiency of the biological pump, and hence a tendency
for an overall near complete compensation between the ef-
fects of biology and circulation. This does not occur region-
ally: in the very nearshore, the nutrient use efficiency is rela-
tively low, allowing a part of the upwelled DIC to escape into
the atmosphere. However, as these waters “age” while they
are being transported further offshore, the biological pump
operates so efficiently that all nitrate is fully utilized, creat-
ing the conditions for some of the escaped CO2 to be taken
up again by the surface ocean (e.g.,Hales et al., 2005; Feely
et al., 2008; Pennington et al., 2010; Fassbender et al., 2011).

These arguments depend, of course, critically on the near
constancy of the stoichiometric C: N ratio of phytoplankton
growth. Any carbon over- or underconsumption relative to
our assumed Redfield ratio of 106: 16 would permit the bio-
logically driven component of the air–sea CO2 fluxes to de-
couple from the efficiency of the biological pump. But as
we argued above, we expect the potentially systematic ten-
dencies of this ratio to have a relatively small effect on the
whole domain air–sea CO2 fluxes. While the nearshore car-
bon underconsumption makes the biological pump less ef-
ficient there, the tendency for carbon overconsumption in
the offshore, which enhances the efficiency, may largely
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compensate for it, resulting in little overall change. This is
rather speculative, and a more thorough assessment of the ef-
fect of systematic variations in the stoichiometric ratios on
the air–sea CO2 fluxes is clearly needed. But our current un-
derstanding of the underlying processes controlling these ra-
tios is poor, preventing us from following this path.

Regardless of the uncertainty arising from the stoichio-
metric ratios, the efficiency of the biological pump might
change in the future under climate change-driven perturba-
tions such as upwelling-favorable wind intensification and
increased stratification. For example,Lachkar and Gruber
(2013) show that increasing upwelling-favorable winds re-
sults in a decrease in the biological pump efficiency, and
hence an increase in the CO2 outgassing. This is because the
large increase in outgassing associated with the upwelling in-
tensification outweighs the effects of the concurrent increase
in productivity on surfacepCO2.

It is important to recognize that the anthropogenic pertur-
bation of atmospheric CO2 has perturbed the air–sea CO2
fluxes in the CalCS. By comparing our simulations to one
where we had set atmospheric CO2 to a preindustrial value
of 280 µatm (Gruber et al., 2012; Hauri et al., 2013), we esti-
mate the domain mean uptake flux of anthropogenic CO2 in
the CalCS to be about−1 molCm−2yr−1, which is about
twice as large as the global mean (e.g.,Mikaloff Fletcher
et al., 2006; Gruber et al., 2009; Wanninkhof et al., 2013).
This is not unexpected given that upwelling regions tend to
be places of stronger than normal uptake of anthropogenic
CO2 from the atmosphere, largely as a consequence of them
transporting waters to the surface that have not seen the at-
mosphere for some time. This substantial uptake flux of an-
thropogenic CO2 implies that the entire CalCS in preindus-
trial times was a small to moderate net source of CO2 to the
atmosphere.

The different processes controlling surface oceanpCO2
operate in the CalCS in a manner that is similar to how they
impact surface oceanpCO2 on the global scale, as also there
the interaction of ocean circulation and biology is a primary
determinant of the spatial distribution of the air–sea CO2
fluxes (e.g.,Gruber and Sarmiento, 2002; Toggweiler et al.,
2003; Sarmiento and Gruber, 2006; Gruber et al., 2009).
Globally, circulation in the absence of biology tends to in-
creasepCO2 everywhere, with the efficiency of the biologi-
cal pump ultimately determining how strong the opposing ef-
fect of biology ends up being, i.e. whether a particular region
becomes a source or a sink of CO2, with regard to the biolog-
ical loop. In the CalCS, the high degree of nutrient utilization
and the implied high efficiency of the biological pump sug-
gests that this region operates more like the temperate to sub-
polar North Atlantic, where the biologically induced fluxes
are overall small, and very unlike the North Pacific, where
a low nutrient utilization leads to a substantial net outgassing
of CO2 associated with the biological loop (Gruber et al.,
2009). We expect also the Canary Current System to operate
very similarly to the CalCS given the observed complete nu-

trient utilization there. In contrast, we expect the Humboldt
Current System, where nitrate is often not very efficiently
used due to iron limitation, to have a strong net outgassing
caused by the inefficient biological pump.

8 Summary and outlook

We used a series of eddy-resolving simulations of the CalCS
(i) to assess the climatological mean air–sea CO2 fluxes
and their spatiotemporal variability and (ii) to determine the
drivers and processes behind the variability of these fluxes
and ultimately surface oceanpCO2.

Our model results demonstrate that the CalCS
is essentially balanced in terms of air–sea CO2
fluxes, with a very small net uptake flux density of
−0.05± 0.20 molCm−2yr−1. The fluxes vary strongly
locally and on a seasonal timescale, with the nearshore
100 km losing a substantial amount of CO2 to the atmo-
sphere, which is largely compensated by biologically driven
uptake in the regions offshore of 100 km. We interpret this
strong spatial compensation to be the result of a highly
efficient biological pump, as indicated by the complete
utilization of the upwelled limiting nutrient, nitrate. The
CalCS acts also as a substantial sink for anthropogenic CO2,
taking up approximately−1 molCm−2yr−1, implying that
the CalCS was a weak source of CO2 to the atmosphere
in preindustrial times.

Nearly all of the variability in air–sea CO2 fluxes is caused
by surface oceanpCO2, whose seasonal variability domi-
nates over most of the offshore areas, while in the nearshore
100 km most of the variability is determined by subseasonal,
mesoscale activity. The variability in the nearshore is mostly
associated with circulation and biological production, which
affect DIC, Alk andT , while air–sea CO2 fluxes, CO2 sol-
ubility and FW fluxes play a minor role. However, offshore
of 100 km, changes inT are the most important drivers of
pCO2 variability.

One of the main caveats of our model study is that we nei-
ther include high frequency forcing associated with weather-
related events, nor longer-term interannual variability. We
aim to address this issue in a future study by adding such
forcing to our model. We also plan to include an analysis
of spatial and temporal decorrelation length scales in order
to assess the required sampling density for accurately deter-
mining the source/sink nature of the CalCS.

Although we made through our model-based study sub-
stantial progress in determining the source/sink nature of
the CalCS and the mechanisms underlying it, it would be
highly desirable to verify this with observations. Clearly, the
current network is largely inadequate for this purpose, and
would have to be substantially strengthened. Furthermore,
accurate quantification of the net air–sea CO2 fluxes in the
CalCS is also becoming increasingly important in the con-
text of CO2 inversion studies that aim to verify the emissions

www.biogeosciences.net/11/671/2014/ Biogeosciences, 11, 671–690, 2014



688 G. Turi et al.: Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the CalCS

of anthropogenic CO2 in California through measurements
of atmospheric CO2. This is because the large and highly
variable air–sea CO2 fluxes leave a substantial imprint on at-
mospheric CO2, which has to be well quantified before the
emissions can be inferred. Together with the observations,
the models need to be further developed and refined, as they
permit us to put the observations into a spatiotemporal con-
text, and help assess the relevant processes.
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