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The literature on ocean acidification (OA) contains a prevalent misconception that reduced organismal calcification rates in an acidifying ocean are
driven by a reduction in carbonate ion (CO2−

3 ) substrate availability (e.g. Omega orV). However, recent research in diverse organisms suggests that a
reduction in seawater pH (i.e. increasing proton concentrations, [H+]) is the most likely driver of reduced calcification rates in these organisms. OA
leads to higher [H+] in seawater which alters the proton gradient between internal cellular reservoirs and external bulk seawater, making it difficult
for organisms to maintain pH homeostasis. Biologically mediated calcification is a complex process, so it is unlikely that simple CO2−

3 substrate
limitation is responsible for the observed decreases in calcification rates under OA conditions. Despite these inherent complexities, current pre-
dictions concerning the fate of calcifying organisms in an acidifying ocean have relied on the relationship between calcification rates andV. To more
accurately predict how OA will affect the calcification of marine organisms, and consequently the global carbon cycle, we need to further elucidate
the mechanisms driving observed decreases in calcification under acidified conditions.
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Ocean acidification (OA) refers to the unprecedented reduction in
seawater pH caused by anthropogenic CO2 inputs (Hönisch et al.,
2012). OA is expected to reduce the ability of marine organisms
such as corals, coccolithophores, foraminifera, and molluscs to
secrete calcium carbonate (CaCO3) skeletons, a process known as cal-
cification (see Table 1) (Chan and Connolly, 2012; Kroeker et al.,
2013). As CO2 dissolves into seawater, it lowers the pH and shifts
the carbonate equilibria, decreasing the carbonate ion concentration
([CO2−

3 ]). This lowers a chemical property of seawater known as the
calcium carbonate saturation state or V. Seawater V is a function of
CO2−

3 and calcium ion concentrations ([Ca2+]) as follows

V = [Ca2+][CO2−
3 ]

Ksp
, (1)

where Ksp is the solubility product of a specific CaCO3 mineral phase
(e.g. aragonite or calcite) at a specified temperature, salinity, and

pressure (Zeebe and Wolf-Gladrow, 2001). Therefore, the thermody-
namics of inorganic CaCO3 precipitation and dissolution can largely
be described by seawater V, with precipitation occurring at V . 1
and dissolution at V , 1 (Morse and Arvidson, 2002).

Ca2+ + CO2−
3 ↔ CaCO3. (2)

From an OA perspective,V is mainly controlled by changing [CO2−
3 ],

which is lowered as anthropogenic CO2 dissolves into seawater, while
[Ca2+] remains unaffected.

Having the thermodynamic principles of inorganic CaCO3 pre-
cipitation in mind, early OAwork investigated the calcification rates
of organisms such as corals in seawater of varyingVby manipulating
bulk seawater [CO2−

3 ] and [Ca2+] (e.g. Gattuso et al., 1998; Langdon
et al., 2000). Experimental evidence showed a positive correlation
between calcification and V, which led to the idea that seawater
[CO2−

3 ] could drive calcification rates. However, to determine
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how OA affects calcification it becomes critical to differentiate
between the inorganic precipitation and dissolution of CaCO3

(which is thermodynamically constrained by seawater V) and bio-
logically mediated calcification (see Table 1). In fact, it has been sug-
gested that inorganic CaCO3 dissolution may be more of a threat to
marine calcifying organisms and calcareous ecosystems than de-
creasing calcification rates under OA (Andersson et al., 2009;
Roleda et al., 2012; Eyre et al., 2014). However, many OA studies
have not been able to isolate the effects of seawaterV on organismal
calcification rates in the absence of dissolution (i.e. gross calcifica-
tion) because CaCO3 is exposed to bulk seawater as either sediment
or skeletal material. Therefore, any dissolution of exposed CaCO3

could produce or enhance the observed relationships between V

and net calcification. On the other hand, gross calcification is
under biological control and mediated by organic tissue that sepa-
rates the calcifying surface from overlying seawater. Therefore
calcification occurs in a media (i.e. the calcifying fluid) that has
significantly different [CO2−

3 ] than the bulk seawater. However,
despite the complexities inherent to biological mediated calcifica-
tion, much of the current OA literature presents the problem of
reduced calcification under OA scenarios as an issue of simple
CO2−

3 substrate availability [e.g. Equation (2)] (Hendriks et al.,
2015).

Recent work has demonstrated that corals can actively control
carbonate chemistry at the site of calcification (Venn et al., 2011;
McCulloch et al., 2012), which brings into question the mechanistic
understanding of how external seawater V could influence
organismal calcification rates. Currently, lines of research in differ-
ent organisms and ecosystems are beginning to reach the same con-
clusion, that external seawater V (i.e. [CO2−

3 ]) is not what drives
changes in calcification rates. Here we show that these insights
have been developed in two vastly different systems; scleractinian
corals and open ocean phytoplankton known as coccolithophores.

The ability to modify carbonate chemistry at the site of calcifica-
tion can produce internal conditions that are more thermodynam-
ically favourable for inorganic CaCO3 precipitation than in the
surrounding seawater (i.e. a greater V). It has been shown that
corals transport seawater to the site of calcification, however, once
it is part of the calcifying fluid the chemistry of that seawater is
actively modified (Gagnon et al., 2012). Coccolithophores passively
regulate cytosolic pH through voltage-gated H+ channels; however,
they actively regulate carbonate chemistry in their calcifying vesicles
(Mackinder et al., 2010). Marine organisms have also been shown to
modulate calcification through the use of organic molecules that can
both stimulate or inhibit specific crystal lattice structures (Marsh,
1994). Therefore, in order for the external seawater chemistry to
affect calcification rates, it must somehow affect that organism’s
ability to modulate its internal carbonate chemistry or produce
organic compounds that mediate precipitation. Two lines of

physiological evidence suggest that bulk seawater V does not
control the V in the calcifying fluid, and thus, is not the major
factor controlling organismal calcification rates.

1. While CO2−
3 is the substrate for inorganic CaCO3 precipitation,

no CO2−
3 transporter has been described in corals (Goiran et al.,

1996) or coccolithophores (Mackinder et al., 2010). However,
there is ample evidence that bicarbonate (HCO−

3 ) is actively
transported into the calcifying fluid of corals (Goiran et al.,
1996; Moya et al., 2008; Jury et al., 2010) and coccolithophores
(Berry et al., 2002; Herfort et al., 2002, Rost et al. 2003).
Therefore, once HCO−

3 is transported into the calcifying fluid
and CO2−

3 is combined with Ca2+ during calcification, H+ ions
build-up (Figure 1);

Ca2+ + HCO−
3 � H+ + CaCO3 (3)

Since there is �9 times the [HCO−
3 ] as [CO2−

3 ] in seawater, and
OA increases [HCO−

3 ], it is unlikely that HCO−
3 substrate limita-

tion under decreasing seawater pH is a problem for calcification.
However, increasing seawater [H+] could be quite problematic.

2. As H+ ions build-up in the calcifying fluid the pH is lowered and
the carbonate system shifts away from CO2−

3 , thus lowering V.
Therefore, to maintain conditions favourable to inorganic
CaCO3 precipitation within the calcifying fluid, the organism
must passively or actively remove H+ ions through membrane
channels/transporters (Allemand et al., 2011; Taylor et al.,
2012). As the oceans absorb CO2 and seawater H+ concentra-
tions increase, the electrochemical gradient between coral
tissue and cytosolic fluids will decrease, making it more difficult
to maintain high V in the calcifying fluid. This is the underlying
concept behind the proton flux limitation model of calcification.

The conceptual framework of the proton flux limitation model has
been elucidated in both corals (Jokiel, 2011a, b) and coccolithophores
(Suffrian et al., 2011; Bach et al., 2013) (Figure 1). Once protons are
transported into the tissue or cytosolic fluid from the calcifying
fluid they must be removed to the water column to maintain intracel-
lular pH, which becomes more energetically demanding as the proton
concentration of seawater increases. If proton flux limitation at the
boundary layer between the organism and seawater is the limiting
factor for calcification, then increased energy production should
lead to higher calcification rates by allowing more H+ ions to be ac-
tively pumped out of the calcifying fluid. This has been demonstrated
in two distinct pathways in corals: (i) more light (and increases in
photosynthesis) results in increased calcification rates (Marubini
et al., 2001; Al-Horani et al., 2003) and (ii) feeding the coral with

Table 1. Definition of terms referring to calcification and inorganic CaCO3 precipitation/dissolution in the OA literature.

Term Definition

Calcification or gross calcification Refers to the biologically controlled process of CaCO3 production, often occurs isolated from bulk
seawater in media called the calcifying fluid

CaCO3 precipitation Refers to the inorganic formation of CaCO3 minerals from a super saturated solution
CaCO3 dissolution Refers to the inorganic dissolution of CaCO3 minerals in an under saturated solution, sometimes

decalcification is used synonymously
Net calcification The net effect of gross calcification and dissolution, usually refers to individual organisms
Net community calcification or net

ecosystem calcification
The net effect of gross calcification and dissolution in an entire ecosystem
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plankton enhances calcification rates (Ferrier-Pages et al., 2003;
Houlbrèque et al., 2004; Towle et al., 2015). Another hypothesis
explaining light enhanced coral calcification is in direct agreement
with the proton flux limitation hypothesis. Moya et al. (2006) sug-
gested that increased pH in the gut of coral polyps during the day
(Furla et al., 2000; Al-Horani et al., 2003) decreases the gradient
against which H+ ions are pumped out of the calcifying fluid. It has
also been suggested that the carbon concentrating mechanism
(CCM) used by coral endosymbionts during daytime photosynthesis,
which produces OH2 ions, can absorb excess H+ (Furla et al., 2000).
In coccolithophores, the cytosolic pH is regulated by H+ efflux via
passive voltage-gated H+ channels (Suffrian et al. 2011). However,
under ocean acidification scenarios, the electrochemical gradient
becomes less and less favourable, most likely affecting pH and
Omega inside the calcifying vesicle.

Results from field and mesocosm studies of coral reef ecosystems
are also consistent with the proton flux limitation model. Venti et al.
(2014) recently demonstrated that light and temperature had much
greater control than seawater V on changes in seasonal calcification
rates of corals in the field. Also, a diel hysteretic pattern between ex-
ternal seawaterVand calcification rates, with the highest rates of cal-
cification occurring before the daily peak in bulk seawater V, has
been observed in all levels of coral ecosystems from carbonate sedi-
ments (Cyronak et al., 2013b), to corals and macroalgae (Jokiel et al.,
2014), and entire ecosystems (McMahon et al., 2013; Shaw et al.,
2015). The hysteretic pattern observed in these studies is most
likely due to the influence that benthic organisms have on seawater
carbonate chemistry in coral reef ecosystems, with benthic produc-
tion and calcification driving diel changes in seawater V, not the
other way around. Importantly, these studies demonstrate the

Figure 1. A simplified schematic demonstrating the internal build-up of protons during the calcification process in corals and coccolithophores.
Corals (left panel) must dissipate excess protons produced by calcification through a boundary layer and into the water column as proposed by
Jokiel (2011b). Internally, corals most likely actively pump HCO−

3 ions into the calcifying fluid where protons build-up as CaCO3 is precipitated. To
maintain favourable conditions for precipitation in the calcifying fluid, corals likely actively pump 2H+ out and Ca+2 in using a Ca+2-ATPase
(Allemand et al., 2011). To maintain the pH inside their tissue corals must remove protons, which becomes more energetically demanding when the
gradient between the tissue and seawater [H+] is less pronounced due to ocean acidification. Suffrian et al. (2011) demonstrated that internal
cellular pH (pHi) in coccolithophores like Emiliania huxleyi (right panel) is directly affected by the surrounding seawater pH. This is most likely
because E. huxleyi uses passive gated H+ channels to control cytosolic pH, which are forced to work against a less pronounced H+ gradient in an
acidifying ocean. Black arrows represent fluxes between the organism and external seawater while white arrows represent fluxes occurring within
the organism.
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complexity in extrapolating the effects of OA based on short term
natural changes in V. There is also a strong correlation between
primary production and calcification in a range of studies (e.g.
Gattuso et al., 1999), indicating that photosynthesis is a dominant
control on coral calcification.

Field and laboratory evidence across organisms and ecosystems
indicates that calcification in an acidifying ocean is not controlled
by bulk seawater V, but most likely inhibited by an increase in the
gradient of protons between the calcifying fluid and external seawater.
Therefore, a much better indicator of the influence of seawater chem-
istry on calcification may be the ratio of the substrate (dissolved inor-
ganic carbon; DIC or [HCO−

3 ]) to the waste product ([H+]) (Jokiel,
2011a, 2013). In fact, recent experimental evidence in mussels
demonstrated that the seawater [HCO−

3 ] to [H+] ratio is important
in controlling calcification rates (Thomsen et al., 2015), indicating
that pH homeostasis may be important in controlling biologically
mediated calcification in a diverse range of organisms. In contrast,
a recent study suggested that bivalve larvae were particularly sensitive
toV (Waldbusser et al., 2015). However, Waldbusser et al. (2015) did
not distinguish between the effects of V on gross calcification and
dissolution, and their results may be due to the dissolution of
CaCO3 shells exposed to under saturated seawater. Furthermore, an
additional explanation for the lack of correlative power between
changes in calcification rates and pH (instead of V) in some studies
with un-coupled carbonate chemistry manipulations, such as in
Langdon et al. (2000) or Waldbusser et al. (2015), is that increasing
[HCO−

3 ] could partially compensate for unfavourable pH levels.
It is also important to remember that calcification is influenced by

many other factors such as light availability and temperature, which
may be more important in driving future changes in calcification
rates (McNeil et al., 2004). The coupling of seawater pH and V

under ocean acidification scenarios (i.e. inputs of CO2) can lead to
positive correlations between calcification and both pH and V.
However, pH and V can become decoupled or negatively correlated
on geological time scales due to land-based weathering processes
(Hönisch et al., 2012), and on more modern timescales due to oppos-
ite effects of temperature on pH and V (Figure 2) (Gattuso et al.,
1999). While this decoupling is not likely on the timescale of
modern OA in the open ocean, it could occur in some coastal areas
with pronounced diel temperature variability.

Current predictions of the fate of coral reefs in an acidifying
ocean which are reliant on the relationship between net ecosystem
calcification and V (e.g. Figure 6 in Shamberger et al., 2011 could
be based on a basic misconception about the factors driving
changes in coral physiology. With this in mind, it becomes vitally
important to grasp the correct mechanistic understanding of how
increasing CO2 inhibits the calcification of marine organisms. We
are not the first to stress this point. A recent perspective article
noted a disconnect between the more recent OA literature and
older studies on calcification physiology (Roleda et al., 2012).
Other recent work is beginning to highlight the sensitivity of
CaCO3 dissolution to OA, which may pose a more serious threat
to coral reef ecosystems than changes in calcification (Andersson
et al., 2009; Cyronak et al., 2013a; Eyre et al., 2014). Multiple theories
exist for the influence of OA on marine calcifiers (Allemand et al.,
2011). However, the prevailing notion in the OA literature that cal-
cification is inhibited through a reduction in seawater [CO2−

3 ], and
thus V, is most likely incorrect. Rather, as outlined above, it is most
likely the decrease in seawater pH and associated problems of pH
homeostasis within organisms that governs changes in calcification
rates under OA conditions.
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