

Processes controlling eutrophication-induced acidification in the northern Gulf of Mexico: Current state and projected changes from a coupled physical-biogeochemical model

<u>A. Laurent</u>¹, K. Fennel¹, L. Barbero^{2,3}, W.-J. Cai⁴, W.-J. Huang⁵, D. Ko⁶, J. Lehrter⁷ and R. Wanninkhof³

Session AH41A: Nutrient Enhanced Coastal Acidification and Hypoxia

¹ Department of Oceanography, Dalhousie University, Halifax, Canada
² CIMAS/U. Miami, Miami, USA
³ NOAA/AOML, Miami, USA
⁴ University of Delaware, Newark, USA
⁵ Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
⁶ Naval Research Laboratory, Stennis Space Center, USA
⁷ US EPA, Gulf Ecology Division, Gulf Breeze, USA

1. Introduction

source: http://weather.blogs.foxnews.com

source: http://eoimages.gsfc.nasa.gov

1. Introduction

source: http://weather.blogs.foxnews.com

source: http://eoimages.gsfc.nasa.gov

2. Objectives

source: http://weather.blogs.foxnews.com

- 1. Investigate the current state of acidification on the Louisiana Shelf and its controlling processes
- 2. Simulate projected changes in a high CO2 world (2100)

3. Modeling framework

Circulation model (ROMS)

Resolution: 3-5 km in horizontal, 20 vertical layers

- **Forcing:** 3-hourly winds; climatological surface heat and freshwater fluxes
- **River inputs:** daily freshwater input (U.S. Army Corps of Engineers); monthly nutrient and particulate matter loads (USGS)

Boundary conditions: climatology

Biogeochemical model

Nitrogen cycle

see Fennel et al 2006, GBC; Laurent & Fennel 2014, Elementa; Yu et al 2015, Biogeosciences

- 6 N-cycle state variables + O2
- PO4 and river DOM additional state variables

Carbon cycle

see Fennel et al 2008, GRL

- Initial, boundary and river TA and DIC determined from observations Cai et al (2010, 2011)
- Climatological atmospheric pCO2
- Bottom DIC flux function of sediment oxygen consumption (SOC)

Laurent et al., submitted to GRL

Aragonite saturation

Currently, despite an extensive area of acidified waters, bottom waters are not corrosive to calcifying organisms.

Laurent et al., submitted to GRL

DIC production processes

- 1. Nitrification has a negligible effect on pH
- 2. River DOM does not contribute significantly to acidification
- 3. Small detritus remineralization is the dominant DIC production process in the water column
- 4. Within the bottom 5 m, where acidification occurs, sediment-water DIC flux is the dominant DIC production process, hence has a dominant effect on acidification

MPI Earth System Model (CMIP5, RCP 8.5)

Two experiments to assess future changes

Present (2005-2007)

Future (3 years, ca. 2100)

• **Physics** • boundary/initial conditions from the regional IASNFS model

Ηd

- Increased stratification (+10%) and bottom water temperature (+7%)
 - Stratification increases the potential for hypoxia and acidification
 - warmer bottom waters influence sediment-water fluxes

Expansion of hypoxia and acidification

- Doubling of hypoxic area
- Lower pH (Δ pH = -0.46) due to increased DIC in the water column (+10%) and higher sediment-water DIC flux (+22%)
- Decrease in aragonite saturation (from 3.8 to 2.1 in summer)
- Corrosive waters appear but their spatial extent remains limited

5. Conclusions

Current state

- An extensive area of acidified water occur on the shelf in summer
- These waters remain far from aragonite undersaturation
- Acidification is driven by the release of CO2 from respiration in the sediment

Projected changes

- More stratification and higher bottom temperature
- Increase of hypoxia (at current nutrient load)
- pH and saturation state are expected to drop significantly
- Limited extent of corrosive waters

