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Abstract

Aquatic environments experiencing low-oxygen conditions have been de-
scribed as hypoxic, suboxic, or anoxic zones; oxygen minimum zones; and, in
the popular media, the misnomer “dead zones.” This review aims to elucidate
important aspects underlying oxygen depletion in diverse coastal systems and
provides a synthesis of general relationships between hypoxia and its control-
ling factors. After presenting a generic overview of the first-order processes,
we review system-specific characteristics for selected estuaries where adja-
cent human settlements contribute to high nutrient loads, river-dominated
shelves that receive large inputs of fresh water and anthropogenic nutrients,
and upwelling regions where a supply of nutrient-rich, low-oxygen waters
generates oxygen minimum zones without direct anthropogenic influence.
We propose a nondimensional number that relates the hypoxia timescale and
water residence time to guide the cross-system comparison. Our analysis re-
veals the basic principles underlying hypoxia generation in coastal systems
and provides a framework for discussing future changes.
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1. INTRODUCTION

The phenomenon of low-oxygen conditions in aquatic ecosystems has captured the interest of
investigators across the natural sciences for decades. Since the metabolism of all metazoans (mul-
ticellular animals) requires oxygen, the phenomenon is of interest to biologists and ecologists.
Geochemists are interested because of oxygen’s role in reduction–oxidation (redox) reactions that
are central in biogeochemical cycles. Physical oceanographers have become increasingly inter-
ested in the dynamics of oxygen depletion because it is highly dependent on physical oxygen
supply. Hypoxia is a unique research topic given the scales of its temporal and spatial variability,
the multitude of its controlling mechanisms, its significance across scientific disciplines, and its
increasing societal relevance.

While some aquatic environments are naturally prone to low-oxygen conditions, it has become
increasingly clear that anthropogenic nutrient inputs stimulate primary productivity (also referred
to as eutrophication) and thus exacerbate oxygen depletion. Links between eutrophication and hy-
poxia were first recognized in various European and North American lakes in the 1950s and 1960s
and were later documented in estuaries, coastal regions, and marginal seas, including Chesapeake
Bay, the northern Gulf of Mexico shelf, and the Baltic Sea (Nixon 1998). Anthropogenic nutrient
inputs (nutrient loads) result from two main sources: raw or crudely treated wastewater from urban
areas, and manure and synthetic fertilizer from agriculture (atmospheric deposition and storm-
water runoff also contribute). Because hypoxic conditions negatively affect aquatic organisms and
food webs (Vaquer-Sunyer & Duarte 2008), societal commitments have been made to limit the
flux of anthropogenic nutrients to fresh, estuarine, and coastal ocean waters.

In this review, we discuss the biogeochemical controls on hypoxia by focusing on selected
estuarine and coastal systems around the globe. For these systems, observations and model simu-
lations are available to describe the major underlying processes and long-term changes, enabling
a cross-system synthesis. Previous reviews on hypoxia include Diaz & Rosenberg’s (2008) seminal
contribution linking the global rise of coastal hypoxia to anthropogenic nutrient inputs, Testa
& Kemp’s (2011) review of biogeochemical drivers and feedbacks, and Breitburg et al.’s (2009)
synthesis of the ecological consequences. This review aims to generalize the key aspects of hy-
poxia development across diverse coastal systems, emphasizing the role that numerical models
have played and providing a synthesis of relationships between oxygen depletion and controlling
factors.

2. OVERVIEW OF PROCESSES UNDERLYING HYPOXIA GENERATION

The oxygen concentration in a given volume of water is determined by its initial concentration
at some arbitrary point in time and the cumulative oxygen sources and sinks that have acted on
the volume since that initial time. Oxygen sources include photosynthetic production and any
oxygen flux into the volume, e.g., by air–sea gas exchange or physical influx across the volume’s
perimeter (Figure 1a). Oxygen sinks include biochemical processes, such as respiration by mi-
crobes and metazoans; consumption by chemoautotrophs (e.g., nitrifying bacteria); oxidation of
reduced chemical species, such as reduced metals and hydrogen sulfide; and export of oxygen by
physical transport, uptake by the sediment, and outgassing across the air–sea interface.

Surface waters are well oxygenated because exchange with the atmosphere and photosyn-
thetic production generally exceed the oxygen sinks. In subsurface waters, where photosynthesis
is diminished or absent, oxygen sinks dominate, and physical supply is crucial for maintaining well-
oxygenated conditions. Hypoxia is generated when oxygen sinks act in combination with restricted
supply. The degree of oxygen depletion depends on the magnitude of the net oxygen sink (the sum
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Figure 1
(a) Four processes that affect oxygen evolution in a defined control volume: air–sea exchange, sediment uptake, the balance of
water-column primary production and respiration, and physical transport across the volume’s boundaries. (b) Idealized trajectories of
oxygen over time in relation to net respiration rate (R) and initial oxygen concentration (Oxini). (c) Schematic contrasting the relative
roles of sediment and water-column respiration (Rsed and RWC, respectively) in driving total respiration in a deep (h1) versus shallow
(h2) water column.

of net biochemical consumption in the water column and sediment minus any physical supply)
and the duration for which this oxygen sink applies. In other words, hypoxia and ultimately anoxia
will occur when sinks exceed sources for long enough to drive oxygen below the hypoxic/anoxic
thresholds1 from its initial concentration (Figure 1b). When biochemical oxygen sinks are large,
hypoxia can be generated on short timescales, and relatively short periods of restricted physical
oxygen supply will suffice. When biochemical oxygen sinks are small, hypoxia will occur if the
physical supply is restricted for sufficiently long.

More formally, we can define the timescale to occurrence of hypoxia, τhyp (in days), as

τhyp = Oxini

R
,

where Oxini (in mmol O2 m−3) is the initial oxygen concentration (assumed to be above the
hypoxia threshold) and R (in mmol O2 m−3 d−1) is the net oxygen consumption rate. Then
the nondimensional number γ , which relates the timescale of hypoxia occurrence to the water
residence time τres (in days),

γ = τhyp

τres
,

1Hypoxic conditions are generally defined as oxygen concentrations below 2 mg L−1 (62.5 mmol O2 m−3). Anoxic conditions
are said to occur when no oxygen is detectable.
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must be less than 1 for hypoxia to occur. This number relates the two factors contributing to
hypoxia generation—net biochemical oxygen consumption and restricted supply of oxygen, which
is related to water residence time.

Net biochemical oxygen consumption is the local rate of consumption minus photosynthetic
production. Most photosynthetic production occurs in the surface ocean except in shallow, clear
waters, where photosynthesis can occur in and on the sediment because of the presence of benthic
algae, submerged rooted macrophytes, and macroalgae. Oxygen consumption occurs through the
aerobic respiration of organic matter by microbes and metazoans and the microbial oxidation of
reduced inorganic species (e.g., ammonium and hydrogen sulfide). Some of these reduced species
are produced during anaerobic microbial respiration of organic matter, which typically occurs
in sediments. All oxygen consumption is thus driven by the supply of organic matter regardless
of whether its respiration occurs via aerobic or anaerobic pathways. Indeed, a common feature
shared by many coastal systems experiencing hypoxia is elevated supply of organic matter, either
through direct input from external sources (e.g., sewage) or internal photosynthetic production
stimulated by inorganic nutrients, which often stem from anthropogenic sources.

The major nutrients supporting primary production in coastal systems are nitrogen (N) and
phosphorus (P). Generally, P is limiting in lakes (i.e., P will be exhausted by primary producers,
while an excess of N remains) but N is often limiting in the open ocean. Although coastal systems
are typically N limited, P can temporarily be in shorter supply, especially in systems that receive
large N inputs. Temporary P limitation is thought to exacerbate hypoxia in some systems (Conley
1999, Paerl et al. 2004) but mitigate hypoxia in others (Laurent & Fennel 2014, 2017). When
temporary P limitation occurs, N uptake slows, and the leftover excess N is available later in time
and downstream from the P-limited region (Figure 2). On the one hand, this can exacerbate
hypoxia because a larger region experiences elevated primary production. On the other hand,
hypoxia may be diminished because primary production is distributed over a larger area, resulting
in lower local rates. These complex spatial and temporal dynamics are difficult to observe directly.
Biogeochemical models that realistically simulate coastal circulation and oxygen dynamics have
proven useful for elucidating these competing processes.

Oxygen consumption via remineralization of organic matter, regardless of whether it is sup-
plied by external loading or internal production, occurs in the water column and sediments.

Space or time

D
IN

 o
r P

P

DIN without P limitation
PP without P limitation
DIN with P limitation
PP with P limitation

Figure 2
Conceptual model relating the drawdown of dissolved inorganic nitrogen (DIN) concentrations over space
or time to primary production (PP). Without phosphorus (P) limitation (dashed lines), DIN is consumed
earlier and farther upstream, focusing PP in a smaller area with higher peak rates. With P limitation
(solid lines), DIN is consumed more slowly and farther downstream, supporting a broader area of elevated PP
with smaller peak rates.
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The relative importance of these two distinct oxygen sinks for hypoxia generation varies by sys-
tem. The sediment sink generally becomes more important in shallow waters (Kemp et al. 1992,
Boynton et al. 2018), partly because shorter water columns provide less space for respiration
(Figure 1c) and partly because a larger fraction of sinking labile organic material will reach the
sediment. Sediments can act as positive feedback on hypoxia when limited oxygen penetration into
sediments diminishes denitrification (Kemp et al. 1990) and stimulates the release of phosphate
from ferric complexes (Slomp & Van Cappellen 2007). As a consequence, hypoxia can elevate
ammonium and phosphate effluxes from sediments, further stimulating primary production.

Regardless of the biochemical oxygen consumption rate, whether a system develops hypoxia
depends on the combination of consumption and physical supply. Coastal hypoxia is often sea-
sonal, occurring during periods of strong density stratification, typically resulting from freshwater
inputs, and terminating when vertical mixing erodes density stratification and resupplies oxygen.
Exceptions are permanently stratified systems like the Baltic Sea and the Laurentian Channel in
the Gulf of St. Lawrence, where permanent stratification prevents vertical mixing of the whole
water column. A useful measure for characterizing the degree to which a volume of water is isolated
from oxygen supply is residence time, defined as the mean time that water particles are contained
within a defined volume. The residence time in coastal systems depends on the bathymetry and
circulation regime. Estuaries, which are restricted bathymetrically and characterized by estuarine
circulation and strong seasonal stratification, have longer residence times than open shelves. On
river-dominated shelves, water residence times are influenced by the magnitude of freshwater input
and latitude because the Coriolis force retains fresh water close to the coast except near the equator.

3. OVERVIEW OF COASTAL SYSTEMS EXPERIENCING HYPOXIA

3.1. Estuaries

Estuaries that experience hypoxia include the Baltic Sea, Chesapeake Bay, the Laurentian Channel
in the Gulf of St. Lawrence, Long Island Sound, and the Pearl River Estuary (Figure 3a,b).

3.1.1. The Baltic Sea. The Baltic Sea is a large, permanently stratified estuary in northern
Europe that receives freshwater and nutrient inputs from a large watershed. It has several deep
(>200 m), permanently stratified basins with severe hypoxia and anoxia (Carstensen et al. 2014).
The large-scale mean circulation comprises a seaward surface flow and a near-bottom inward flow;
inflow occurs in sporadic events, on average every 7–10 years, and delivers well-oxygenated, high-
salinity water to the deep basins (Matthäus 2006). Thus, hypoxia in this system varies in response
to decadal-scale variations in oceanic inflow (Fonselius & Valderrama 2003, Conley et al. 2009)
in addition to long-term changes in nutrient inputs. At its maximum extent of approximately
70,000 km2, the Baltic Sea hypoxic zone is the largest among estuaries and inland seas globally
(Carstensen et al. 2014).

Over the past century, the Baltic Sea has received first rising and then decreasing nutrient loads
and has warmed by nearly 2◦C (Carstensen et al. 2014). While hypoxia was likely present in the
Baltic Sea before anthropogenic nutrients loads (Zillén et al. 2008), recent reconstructions suggest
that it has expanded over the last century in response to anthropogenic nutrient inputs and elevated
respiration due to warming ( Jonsson et al. 1990, Carstensen et al. 2014). The intensity and extent
of hypoxia in the Baltic Sea allow for measurable changes in bottom-water biogeochemistry. For
example, during periods of intense hypoxia, altered biogeochemical processes in deep waters and
sediments result in elevated P accumulation (Conley et al. 2002). A long-term expansion of hypoxia
is apparent despite its modulation by the sporadic inflows of dense, well-oxygenated waters.
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Biogeochemical models have been used to evaluate the relative importance of anthropogenic
and natural nutrient inputs and the mechanisms of oxygen supply during the sporadic inflow events,
and to project the system’s response to projected future changes in temperature and precipitation.
Neumann et al. (2002) showed in model scenario simulations that N2 fixation may increase under
reduced nutrient loads, altering the availability and stoichiometry of nutrients in surface waters.
Their analysis indicates that hypoxic and anoxic conditions may not respond in an easily predictable
manner to reduced nutrient inputs. Neumann et al. (2017) and Meier et al. (2018) have recently
carried out detailed model studies of inflow events. These analyses provide alternative explanations
for why the third-largest inflow event since 1880, which occurred in late 2014, resulted only in
a brief aeration of deep waters and was comparable in its impact on bottom-water oxygen to
the much weaker inflow event of 2003. Neumann et al. (2017) suggested that the weak 2003
and the strong 2014 inflow events had a similar impact on bottom-water oxygen conditions because
the 2003 event was accompanied by several minor inflow events that resulted in a similar supply of
oxygen as in 2014. Meier et al. (2018) emphasized instead an increase in the rate of water-column
oxygen consumption in recent years. While the rate of oxygen consumption at depth is relatively
low, water-column respiration is the dominant contributor to total respiration in the basins.
Meier et al. (2018) suggested that an increase in the rate of water-column oxygen consumption

Northwestern Black Sea

Baltic Sea

Namibian shelf

East China Sea

Pearl River Estuary

a

0 50 100 >170 0 50 100 >170

0 50 100 >170

0 50 75250

250

>500>500

Figure 3
(a) Bathymetry of selected coastal systems: the Baltic Sea, the northwestern Black Sea, the East China Sea,
the Namibian shelf, and the Pearl River Estuary. (b, next page) Bathymetry of selected coastal systems: the
Oregon shelf, the northern Gulf of Mexico, Chesapeake Bay, the Gulf of St. Lawrence along with the
Scotian shelf and Gulf of Maine, and Long Island Sound. The color shows depth (in meters).
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Figure 3
(Continued)

has occurred, while sediment consumption has remained unchanged. Model scenarios of future
conditions indicate that temperature and precipitation are likely to increase, causing reduced
salinity and further reduced oxygen concentrations (Meier et al. 2012).

3.1.2. Chesapeake Bay. Chesapeake Bay receives fresh water, nutrients, and organic matter from
several rivers, the largest of which is the Susquehanna. Hypoxia has been documented throughout
the past century in Chesapeake Bay and its tributaries (Sale & Skinner 1917) and likely has oc-
curred since the European colonization of eastern North America (Zimmerman & Canuel 2000).
Increases in the volume of hypoxic water over the past half century are linked to rising nutrient
loads (Hagy et al. 2004). Hypoxia is generally limited to waters below the pycnocline along the
central deep (>25 m) channel. Chesapeake Bay’s estuarine circulation leads to an estimated mean
residence time of 180 days (Du & Shen 2016). The resulting high retention of nutrients and
organic matter makes the system particularly vulnerable to eutrophication-driven hypoxia.

Observations over the past three decades have revealed intriguing features of temporal and
spatial hypoxia dynamics. Hypoxia initiates in late spring (late April and May) in the landward
reaches of the bay’s deep central basin, where water is isolated by the bay’s estuarine circulation
(Testa & Kemp 2014), then expands seaward to occupy large regions of the main channel; the
degree of expansion is linked to the amount of freshwater and nutrient inputs (Murphy et al.
2011). In the last three decades, the seasonality of hypoxia appears to have changed, starting
earlier and declining later in summer, which is thought to result from a combination of altered
stratification and changes in the magnitude of the spring bloom (Murphy et al. 2011, Testa et al.
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2018). Observations also indicate that seasonal hypoxia can be temporarily interrupted by the
passage of strong storms that induce vertical mixing (Testa et al. 2017). Hypoxia can reestablish
quickly after these events when respiration rates are high and stratification returns.

A large number of numerical models of varying complexity and structure have been applied to
examine oxygen variability in Chesapeake Bay (Irby et al. 2016 and references therein). Hydrody-
namic models with simplified oxygen models have revealed that periods of persistent wind direction
drive lateral advection of low-oxygen water onto shallow shoals, where mixing and ventilation oc-
cur (Scully 2010). These models have also shown that water-column respiration is the dominant
oxygen sink (Li et al. 2015) and that hypoxic volume can be simulated well even when neglecting the
sediment sink (Scully 2013). Coupled physical–biogeochemical models have shown that hypoxia
is sensitive to changes in both N and P loads (Testa et al. 2014, Li et al. 2016) and that projected
future temperatures may exacerbate hypoxia via declining oxygen solubility (Irby et al. 2018).

3.1.3. The Gulf of St. Lawrence. The Gulf of St. Lawrence receives fresh water from the St.
Lawrence River and is connected to the North Atlantic through Cabot Strait and the Strait of
Belle Isle on the northern and southern sides of Newfoundland. In addition to the river—which
is the second largest in North America in terms of fresh water—the Gulf of St. Lawrence receives
substantial inflows from the open North Atlantic (Gilbert et al. 2005). Hypoxic conditions persist
in the 250-m-deep Laurentian Channel, which extends for 1,200 km from the river mouth to the
edge of the continental shelf (Gilbert et al. 2005, Lehmann et al. 2009), because of its permanent
density stratification (Saucier et al. 2003, Galbraith 2006).

An observed long-term decline of oxygen in the Laurentian Channel has been attributed pri-
marily to changes in the composition of North Atlantic source water that enters the channel at
its mouth (Gilbert et al. 2005). Temperature has increased by approximately 1.65◦C over the past
80 years, which could also have contributed to the observed oxygen decline of 1 mmol m−3 y−1

(Gilbert et al. 2010). Lehmann et al. (2009) suggested that benthic respiration is a key driver of
oxygen demand in the Laurentian Channel; their calculations indicated that sediment respiration
is 64% of total water-column respiration. This ratio contrasts sharply with the other systems
considered here and other cross-system comparisons (Kemp et al. 1992, Boynton et al. 2018).
Bourgault et al. (2012) have suggested that water-column respiration is 3–4 times that reported
by Lehmann et al. (2009), where model simulations indicated that benthic respiration was only
17% of overall oxygen uptake. While this value is consistent with the other systems in Figure 4d,
rates of sediment and water-column respiration in the Gulf of St. Lawrence are comparatively
low, suggesting that hypoxia ultimately results from long residence times.

3.1.4. Long Island Sound. Long Island Sound is a semienclosed estuarine system connected to
the Atlantic via a relatively open eastern boundary. Unlike many classical systems, the estuary does
not have a large freshwater source at its landward edge, instead receiving low-salinity water through
several small rivers along its perimeter. The tidally averaged flow in the estuary has been described
as a typical estuarine circulation, with surface waters flowing outward to the Atlantic and bottom
waters flowing inward (Wilson 1976), but there are seasonal and spatial alterations of the magnitude
and direction of circulation (Vieira 2000). While freshwater input is comparatively low, seasonal
low-oxygen conditions occur consistently in the westernmost section (the Narrows), which receives
high nutrient loadings from wastewater discharged by the New York metropolitan area (Parker
& O’Reilly 1991). Oxygen depletion also occurs in the western and central basins of Long Island
Sound, but not as consistently as in the Narrows (Lee & Lwiza 2008, Wilson et al. 2015).

Most detailed studies of oxygen depletion in Long Island Sound have focused on the Narrows,
an area that is 10–20 m deep and well observed. Seasonal oxygen depletion occurs below a weak
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but persistent pycnocline. Multiple reports have suggested a long-term decline in oxygen (Parker
& O’Reilly 1991, Wilson et al. 2008), with low oxygen concentrations (<3 mg L−1) in the central
and western basins and more severe declines in the Narrows since the 1970s and 1980s. Estimates
of both water-column and sediment oxygen consumption suggest that water-column uptake is
more important than sediment consumption (Welsh & Eller 1991). Multiple investigators have
examined aspects of the controls on hypoxia in Long Island Sound, where possible controlling
factors for long-term patterns include alterations to temperature stratification (O’Shea & Brosnan
2000), organic matter production associated with phytoplankton (Lee & Lwiza 2008), and wind-
induced changes in circulation (Wilson et al. 2015). Like Chesapeake Bay, alterations of the vertical
structure of the water column and circulation changes associated with wind stress are important
for hypoxia variability. In Long Island Sound, along-sound wind is associated with ventilation of
deeper waters and influences interannual variations in hypoxia (O’Donnell et al. 2008; Wilson
et al. 2008, 2015). Changes in wind-induced mixing interact with changes in nutrient loading to
drive oxygen depletion, as gradual improvements to sewage treatment processes have yet to cause
large reductions in hypoxic area.

3.1.5. The Pearl River Estuary. The Pearl River Estuary is a subtropical estuarine system
connected to the continental shelf of the northern South China Sea. It is heavily affected by
human activities, with several large cities in its watershed and large nutrient inputs (Dai et al.
2006). The estuary receives inputs from three major tributaries and exports water through several
large outlets (Dai et al. 2006). The circulation of the estuary is characterized by a two-layer flow
during the wet season but dominated by coastal currents during the dry season ( Ji et al. 2011).
Hypoxia occurs in relatively shallow water in the lower estuary (<20 m) (Cai et al. 2004, Rabouille
et al. 2008), when large nutrient and organic matter inputs drive high rates of respiration (Dai
et al. 2006), but tends to be intermittent (Zhang & Li 2010). Sediment oxygen uptake is the
dominant respiration sink, reaching as high as 86.2% of total oxygen consumption (Zhang & Li
2010). Despite the large oxygen sink, strong physical forces, including tides and lateral advection,
act to replenish oxygen and prevent persistent hypoxia (Zhang & Li 2010). Only during periods
of strong vertical stratification does hypoxia develop.

3.2. River-Dominated Shelves

River-dominated shelf systems that receive large freshwater and nutrient inputs and experience
seasonal hypoxia include the northern Gulf of Mexico, the East China Sea, and the northwestern
Black Sea.

3.2.1. The Northern Gulf of Mexico. The northern Gulf of Mexico is heavily influenced by
freshwater and nutrient inputs from the Mississippi/Atchafalaya River system, which drains a large
fraction of North America, including the Corn Belt in the Midwest, where industrial fertilizers
are heavily applied. Recurring bottom-water hypoxia in summer, extending over a shelf area of
approximately 15,000 km2, has been documented since 1985 (Rabalais et al. 2002) and results from
the combination of fresh-water-induced stratification and nutrient-stimulated local production.
The N load doubled between the 1950s and mid-1980s, coincident with an exponential increase
in the use of synthetic N-based fertilizers (Turner & Rabalais 1991), and has not significantly
decreased since then.

Modeling studies for the Gulf of Mexico have shown that the sediment oxygen uptake is of
disproportionate importance for hypoxia generation, that P limitation is mitigating hypoxia, and
that physical oceanographic forcing is strongly modulating the hypoxic extent and duration. An
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important characteristic of this system is that low oxygen concentrations are restricted to the
bottom boundary layer, a relatively thin, well-mixed layer above the bottom (Wiseman et al.
1997). Remnants of low-oxygen bottom boundary layers that have detached from the bottom are
occasionally observed as oxygen minima at mid-depths in the water column (W. Zhang et al. 2015).
Hypoxia simulations performed with different circulation models consistently show the upper
limit of hypoxic waters coinciding with that of the bottom boundary layer (Fennel et al. 2016).
Since the bottom boundary layer is relatively thin (1–4 m), oxygen consumption by sediments
is the dominant oxygen sink within the volume that becomes hypoxic (Fennel et al. 2013, Yu
et al. 2015b). Given the importance of sediment oxygen consumption, efforts have been made to
improve the representation of biogeochemical coupling between the sediment and the overlying
water column (Laurent et al. 2016, Moriarty et al. 2018).

The ratio of inorganic N to P in the Mississippi River varies seasonally between 16:1 and 100:1
and is well above the Redfield ratio of 16:1 for most of the year (Laurent et al. 2012). Especially
during peak discharge in spring, the N:P ratio is high, suggesting that photosynthetic nutrient
uptake will lead to P exhaustion, leaving behind excess N. Observations of nutrient distributions,
measurements of phosphatase enzyme activity, and bioassays have shown that primary production
is indeed limited by P during spring and summer (Sylvan et al. 2006, 2007). These observations are
reproduced well in model simulations (Laurent et al. 2012, Laurent & Fennel 2014), which show
that excess N is transported farther downstream and consumed later due to P limitation. This
spreads the nutrient-stimulated primary production over a larger region, essentially resulting in a
dilution of organic matter loading to the sediments and a decrease in the area affected by hypoxia
(Laurent & Fennel 2014). Scenario simulations for a large suite of nutrient load reductions show
that the system is approaching N saturation, where primary production and hypoxia are relatively
insensitive to small reductions, while more significant load reductions (∼50%) would return the
system to a state where primary production and hypoxia would be more responsive to changes
in nutrient load (Fennel & Laurent 2018). According to these scenario simulations, simultaneous
reduction in N and P loads would be most effective in reducing hypoxia in the northern gulf
(Fennel & Laurent 2018).

There is considerable interannual and short-term variability in hypoxic extent in this region.
Statistical analyses by Forrest et al. (2011) and Feng et al. (2012) showed that only 24% of in-
terannual variability in the hypoxic area is explained by spring nutrient load, while inclusion of
oceanographic predictors such as the duration of upwelling-favorable wind significantly increases
the explained variance. In a follow-up biogeochemical modeling study, Feng et al. (2014) showed
mechanistically that upwelling spreads the fresh, chlorophyll-rich river plume across a large frac-
tion of the shelf, thus increasing the area affected by increasing vertical stratification and delivery
of organic matter. The hypoxic area and duration are also highly sensitive to the magnitude of
wind stress (Yu et al. 2015a). Stochastic processes like meso- and submesoscale instabilities along
the plume front determine the exact distribution of plume water, and small perturbations to wind
or river forcing can therefore have large effects on the simulated plume location (Marta-Almeida
et al. 2013) and hypoxia (Mattern et al. 2013).

3.2.2. The East China Sea. A major source of fresh water and nutrients to the East China Sea is
the Changjiang River, the largest river in China and third largest in the world in terms of discharge
(Liu et al. 2003). Nutrient loads to the river basin have increased by an order of magnitude since the
1960s (Yan et al. 2003, Wang et al. 2015), largely as a result of China’s rapid economic development.
China’s N-based fertilizer use and domestic livestock doubled between the 1980s and 2000s, and
the country surpassed the United States and the European Union in synthetic fertilizer use in 2000
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(Liu et al. 2013). Hypoxic zones of approximately 15,000 km2 have frequently been reported since
2000, although the location can vary significantly from year to year (Zhu et al. 2017). Although
hypoxic conditions off the Changjiang River Estuary were observed as early as the 1950s, the
affected area has grown with increasing nutrient loads (Wang 2009, Zhu et al. 2011).

Hypoxic conditions off the Changjiang River Estuary are controlled by a more complex inter-
play of hydrographic and biogeochemical factors than those in the Gulf of Mexico. Three main
water masses exert their influence: the Changjiang River plume, also referred to as Changjiang
Diluted Water; water supplied by a nearshore branch of the Kuroshio Current, which bifurcates
from the main stem at the shelf break northeast of Taiwan and upwells northward into the East
China Sea; and water supplied by the Taiwan Warm Current, which flows northward between
Taiwan and the Chinese mainland and continues above the nearshore Kuroshio branch (Yang
et al. 2011, 2012; Wang et al. 2012; Chi et al. 2017). Onshore transport of Kuroshio water is of the
same order of magnitude as the transport through the Taiwan Strait by the Taiwan Warm Current
(Guo et al. 2006). The Taiwan Warm Current inflow, with its higher salinity and lower tempera-
ture than the Changjiang Diluted Water, is thought to contribute to vertical density stratification
in the region affected by hypoxia and supplies bottom water low in oxygen (Wang 2009, Wang
et al. 2012). Some have suggested that Taiwan Warm Current water is only a minor contribu-
tion to the hypoxic region and emphasized the contribution of subsurface Kuroshio water, which
is already low in oxygen when it bifurcates from the main stem and experiences further oxygen
drawdown along its path (Qian et al. 2017). The interactions of these different water masses and
their responses to variations in wind forcing and river discharge result in significant interannual
and short-term variations in the location and severity of hypoxia.

Nevertheless, two distinct low-oxygen regions, one north and one south of 30◦N, are often ob-
served and appear to be controlled by a different combination of processes. In the northern region,
stratification is strongly influenced by Changjiang Diluted Water, resulting in a sharp, near-surface
pycnocline (Chi et al. 2017). In the southern region, the vertical density gradient is broader and
larger overall, and low-oxygen conditions are less severe but more persistent (Zhu et al. 2011; Chi
et al. 2017). The cool, high-salinity bottom water observed in the southern region is indicative of
Kuroshio water, which provides a remote source of nutrients that fuel organic matter production
(Chi et al. 2017). While the Changjiang River is a major source of nutrients, supply from open-
ocean sources via the Kuroshio and Taiwan Warm Currents is important (Chen & Wang 1999).

Models have proven useful in elucidating the hydrographic complexity of the region (Guo et al.
2006; Yang et al. 2011, 2012) and the relative influence of riverine versus remote nutrients and
low-oxygen waters on hypoxia generation. Box model calculations (Chen & Wang 1999) suggested
that subsurface Kuroshio water is a more important nutrient source to the East China Sea shelf
than inputs from rivers. Simulations with a coupled physical–biological model confirmed that the
nearshore Kuroshio branch is a major source of remote nutrients, which intrude along the bottom
and are mixed throughout the water column on the shelf during winter (Zhao & Guo 2011).
Using a biogeochemical model with dissolved oxygen, Zhou et al. (2017) examined the sensitivity
of hypoxic extent to riverine versus offshore nutrient contributions and confirmed sensitivity to
both, although simulations with altered river inputs showed a small effect on hypoxia. By contrast,
in the Gulf of Mexico, offshore nutrients have a negligible effect on hypoxia (Mattern et al. 2013).
In a scenario with increased freshwater discharge and nutrient load from the Changjiang River,
only a small effect on hypoxic area was simulated (Zhou et al. 2017), suggesting that riverine
nutrients are not the only determinant of hypoxic extent.

Similarly to the Gulf of Mexico, sediment oxygen consumption appears to contribute to hypoxia
in the East China Sea. The baseline formulation of the model of Zhou et al. (2017) only considered
water-column respiration, neglecting sediment oxygen consumption. When adding the sediment
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oxygen sink, Zhou et al. (2017) found a doubling of the simulated hypoxic area, in better agreement
with observations. Zhang et al. (2017) measured a mean sediment consumption rate of 23 ±
16 mmol O2 m−2 d−1 in the East China Sea, which is similar to rates compiled for the Gulf of
Mexico (Yu et al. 2015b) and close to the median of 20 mmol O2 m−2 d−1 from a global compilation
(Fennel et al. 2009).

Another similarity to the northern Gulf of Mexico is that the river plume is characterized by
excess N relative to P, indicating P limitation. Wong et al. (1998) reported excess nitrate (up to
6 mmol N m−3, versus 0.07 mmol P m−3) in surface waters with salinities less than 30.5 covering
one-third to half of the East China Sea in 1992. P limitation of phytoplankton growth has also
been confirmed experimentally in estuarine and coastal waters in the East China Sea (Harrison
et al. 1990). Using a biogeochemical model that includes nitrate and phosphate, Fan & Song
(2014) simulated widespread P limitation, as had been postulated by Wong et al. (1998).

3.2.3. The northwestern Black Sea. The shelf in the northwestern Black Sea receives inputs
from the Danube, Dniester, and Dnieper Rivers. The Danube and Dnieper are the second- and
third-largest rivers in Europe, with the Danube accounting for approximately half of the total
freshwater discharge into the Black Sea (Ludwig et al. 2009). The average nutrient concentrations
in these rivers were 180 mmol NO3 m−3 and 2.1 mmol PO4 m−3 in the 1990s but dropped by
approximately half between the late 1990s and early 2000s, coincident with the breakup of the
Soviet Union and Eastern Bloc (Ludwig et al. 2009). Regular monitoring of the northwestern
Black Sea during the 1980s and early 1990s documented recurring hypoxia in summer covering
an area extending from 10,000 to 20,000 km2 (Capet et al. 2013 and references therein) and, by
one account, exceeding 30,000 km2 in two years (Mee 2006).

Capet et al. (2013, 2016) used a biogeochemical model to study hypoxia on the northwestern
Black Sea shelf. A regression analysis of their multiyear simulation showed that the river nutrient
load and the reservoir of labile organic matter in the sediment explains 36% of the simulated
variance in hypoxic area (Capet et al. 2013). They also indicated that approximately one-third
of organic matter respiration occurs in the sediments, similarly to the northern Gulf of Mexico
(Yu et al. 2015b). Also similar to the Gulf of Mexico and the East China Sea is that the duration
and spatial extent of enhanced density stratification vary from year to year and are important
in determining the spatial extent and duration of hypoxia. This system exemplifies how temporal
fluctuations and spatial heterogeneity in hypoxic conditions complicate monitoring: Different data
sets have led to drastically different conclusions about the evolution of hypoxia. While Mee (2006)
reported a remarkable recovery in the 1990s, coincident with the economic decline of the former
Soviet Union, Capet et al.’s (2013) model suggests that no recovery occurred and that insufficient
coverage of observations after the mid-1990s has led to misleading conclusions.

3.3. Upwelling Shelves

In the California and Benguela Current systems, upwelling of nutrient-rich, low-oxygen waters
driven by equatorward trade winds results in high rates of primary production (Carr 2002, Chavez
& Messié 2009). Both systems are associated with oxygen minimum zones generated without
direct anthropogenic influence.

3.3.1. The Namibian shelf. The Namibian shelf in the northern Benguela upwelling system,
which is highly productive due to near-constant upwelling of nutrient-rich water, regularly experi-
ences hypoxia in its deep, permanently stratified shelf waters inshore of the 200-m isobath. Anoxic
conditions with an accumulation of methane and hydrogen sulfide from anaerobic decomposition
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of organic matter occasionally occur (Emeis et al. 2004, Lavik et al. 2009). The two main upwelling
centers, where wind stress curl is high and the shelf particularly narrow, are located at Cape Frio
(18.4◦S) and Lüderitz (26.6◦S) (Monteiro et al. 2006). Open-ocean subthermocline waters with
distinct properties are supplied to the shelf at these two locations: relatively fresh and well-aerated
subtropical waters at Lüderitz that ventilate the shelf system, and more saline, nutrient-rich, and
hypoxic waters from the Angola gyre at Cape Frio (Mohrholz et al. 2008). This equatorial source
water is important for nutrient supply to the shelf but also preconditions shelf waters with low
oxygen.

Time-series observations show a clear seasonal cycle of subsurface oxygen, with the lowest
concentrations (frequently reaching anoxia) occurring between February and July and oxygen
concentrations just above the hypoxic threshold occurring in November and December (Monteiro
et al. 2006, 2008). The seasonal oxygen drawdown is out of phase with local respiration, which
peaks in October and November, when subsurface oxygen concentrations increase (Monteiro et al.
2006). Although local oxygen consumption contributes to shaping the seasonal cycle, it is driven
primarily by the along-shelf transport of the two distinct source waters. Equatorial low-oxygen
water, which has its most poleward extension in February, is displaced by better-oxygenated
subtropical water from the Lüderitz upwelling center in November, when oxygen is at its peak
(Monteiro et al. 2006, 2008; Mohrholz et al. 2008).

Two biogeochemical modeling studies of this region were conducted by Gutknecht et al.
(2013) and Schmidt & Eggert (2016). Gutknecht et al. (2013) focused primarily on N cycling pro-
cesses. In their model, hypoxic conditions offshore of the 300-m isobath are driven by a supply of
low-oxygen equatorial water, consistent with the observations, but inshore of the 300-m isobath,
hypoxia is generated primarily by local consumption. The latter is in contrast to the observations
of Monteiro et al. (2006, 2008) and Mohrholz et al. (2008). Gutknecht et al.’s (2013) model also
simulates higher-than-observed minimum oxygen and nitrate concentrations in subsurface waters
on the Namibian shelf. The model by Schmidt & Eggert (2016) more realistically reproduces the
different source waters and their influence on hypoxia/anoxia and is better able to reproduce sub-
surface oxygen and nitrate concentrations. Two major differences between the two biogeochemical
models are that Schmidt & Eggert (2016) explicitly considered the impact of vertically migrating
zooplankton on oxygen and the activity of sulfur-oxidizing bacterial mats on the sediment, which
diminish the release of hydrogen sulfide from the sediment under anoxic conditions. However, it
is unclear, perhaps even unlikely, that these differences can explain the contrasting oxygen con-
centrations in the two models, because physical drivers seem to be most important in this system.

Schmidt & Eggert (2016) provided a model-based estimate of water residence time of 40 days
for the volume affected by hypoxia (18–23◦S, bottom to 400-m depth). In this model, local oxygen
consumption is approximately 0.26 mmol m−3 d−1 in the volume experiencing hypoxia/anoxia,
which agrees with available observations. Hence, for well-oxygenated source waters, it would take
1.5–2 years for hypoxic conditions to be reached, well above the estimated water residence time of
40 days. This back-of-the-envelope calculation illustrates that the system would not reach hypoxic
or anoxic conditions if source waters were not already low in oxygen. Here, seasonal, interannual,
and decadal variations in the severity of hypoxia result primarily from variability in advective
oxygen supply (Monteiro et al. 2006, 2008).

3.3.2. The Oregon shelf. The California Current system, which extends along the western
margin of North America from Vancouver Island in the north to Baja California in the south,
includes the sluggish equatorward eastern limb of the North Pacific gyre, referred to as the
California Current; superimposed wind-driven equatorward jets on the shelf; and the subsurface,
poleward California Undercurrent (Hickey 1998). On the Oregon shelf, winds tend to be from
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the south and downwelling favorable in winter, shifting to upwelling-favorable directions in the
spring; this tilts isopycnals upward, supplying nutrient-rich, oxygen-poor waters to the shelf from
May to October (Huyer 1983).

The seasonal upwelling preconditions the shelf with low-oxygen water and stimulates primary
production, but the local oxygen drawdown does not necessarily reach hypoxic levels. The source
water upwelled onto the shelf originates from 100–200-m depth in the slope region, well above
the deep-water oxygen minimum zone centered around 700–900-m depth (Grantham et al. 2004).
Prior to 2002, hypoxia had not been observed on the Oregon shelf (Grantham et al. 2004, Chan
et al. 2008). Since then, oxygen concentrations in the source water have declined, and hypoxic
and anoxic events have been occurring frequently (Grantham et al. 2004, Chan et al. 2008). The
first occurrence of widespread inner-shelf hypoxia (inside of the 70-m isobath, covering at least
820 km2) observed in 2002 was attributed to an anomalous invasion of low-oxygen subarctic water
into the California Current system (Freeland et al. 2003, Grantham et al. 2004). There is also
evidence that upwelling-favorable winds have increased in recent decades, potentially drawing on
deeper source waters (Garcı́a-Reyes et al. 2015).

A physical–biogeochemical model of the California Current system region (Siedlecki et al.
2015) attributes 50–60% of the seasonal oxygen decline on the shelf to respiration, but with some
geographic differences. Siedlecki et al. (2015) suggested that the supply of low-oxygen source water
and local respiration contribute approximately equally to oxygen drawdown on the Washington
shelf but that local respiration is more important on the Oregon shelf.

4. CROSS-SYSTEM PATTERNS OF NUTRIENT INPUTS
AND OXYGEN CONSUMPTION

For eight of the estuaries and river-dominated shelves discussed above, we compiled estimates of
the thickness of the hypoxic layer and its spatial extent, watershed area, freshwater and nutrient
inputs, residence time for the hypoxic volume, and rates of oxygen consumption in the water
column and sediment (Table 1). We also derived the fraction of oxygen consumption due to
sediment uptake in the volume affected by hypoxia and the hypoxia timescale (τhyp), as defined
in Section 2. The comparison reveals basic principles underlying hypoxia generation in coastal
systems.

Generally, larger hypoxic areas are related to larger nutrient loads (Figure 4a), indicating that
anthropogenic nutrients are an important contributor to hypoxia formation in systems with large
freshwater inputs. The Gulf of St. Lawrence and the Baltic Sea deviate from the trend that is
indicated by the other systems in Figure 4a. The comparatively modest spatial extent in the Gulf
of St. Lawrence is explained by the fact that hypoxia occurs only in the restricted Laurentian
Channel (Figure 3b), with a long residence time. In this system, anthropogenic nutrients are
considered a minor contributor to hypoxia. Local respiration is low, but the ventilation timescale
is long and the source water is low in oxygen (Gilbert et al. 2005). The Baltic Sea has a large
hypoxic area compared with the seasonally mixed, river-dominated shelf systems (the East China
Sea, northwestern Black Sea, and northern Gulf of Mexico in Figure 4a) because its permanent
density stratification prevents seasonal mixing, resulting in slow ventilation.

The wide, passive-margin shelf systems prone to hypoxia (the East China Sea, northwestern
Black Sea, and northern Gulf of Mexico) are dominated by rivers that drain intensively farmed
watersheds, resulting in high nutrient loads (Table 1). An important consideration is whether
riverine loads are efficiently exported to the open ocean across the shelf break, transported in the
along-shelf direction, or retained near the river mouth. In an idealized numerical analysis of global
patterns, Izett & Fennel (2018a,b) showed that for discharges typical of the systems discussed here,
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Figure 4
(a) Maximum reported hypoxic areas across selected systems plotted over watershed nitrogen (N) load. (b) Relationship between N and
phosphorus (P) load across systems. The linear fit to the data is indicated by the solid line, and the parameters characterizing the fit are
shown at the bottom right. Also indicated is the Redfield ratio of 16:1. (c) Hypoxia timescale across systems (including the Namibian
shelf, indicated by a square; see Section 3.3.1) over residence time. (d) Relationship between the percentage of total water-column
respiration contributed from sediments and hypoxic-layer thickness. The dashed gray line shows the relationship from Kemp et al.
(1992), with the red section indicating an extrapolation to 125-m depth. Abbreviations: CB, Chesapeake Bay; LIS, Long Island Sound;
ECS, East China Sea; GSL, Gulf of St. Lawrence; NWB, northwestern Black Sea; NGOM, northern Gulf of Mexico; Baltic, Baltic
Sea; PRE, Pearl River Estuary.

20–40% of river source water is locally retained, and cross-shelf export is negligible except for a
narrow band along the equator. The Coriolis force deflects the buoyant, nutrient-rich river water
into a rotating bulge and downstream current, except in the vicinity of the equator, e.g., for the
Amazon River (Sharples et al. 2017). The open-shelf systems discussed here are outside of the
equatorial band and thus prone to local retention of fresh water and nutrients.

Nutrient loads tend to be higher in systems with large watersheds, and somewhat surprisingly,
the loads of N and P are highly correlated (Figure 4b, Table 1). N:P ratios are much larger than
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the canonical Redfield ratio of 16:1, indicating a large excess of N. This results in temporary P
limitation during and subsequent to discharge peaks, as has been documented for Chesapeake Bay
(Fisher et al. 1999), the northern Gulf of Mexico (Sylvan et al. 2006, 2007), and the East China
Sea (Wong et al. 1998). As described in Section 2 (see also Figure 2), P limitation can exacerbate
or mitigate hypoxia, as seen in the northern Gulf of Mexico (Laurent & Fennel 2014).

Rates of oxygen consumption vary widely between systems. In general, water-column respi-
ration tends to be smaller in deeper systems (the Baltic Sea and Gulf of St. Lawrence), where
the consumption of sinking organic matter is distributed across a longer water column. Sediment
oxygen uptake is also negatively related to depth because a smaller fraction of organic material
produced in surface layers reaches the seafloor. Prior cross-system comparisons for estuarine en-
vironments have revealed a negative exponential relationship between the fraction of total oxygen
consumption due to sediment uptake and depth (Kemp et al. 1992, Boynton et al. 2018). Our com-
pilation generally agrees with this result, although sediments tend to make a smaller contribution
to respiration here, and the Gulf of St. Lawrence is an outlier (Figure 4d).

The hypoxia timescale (τhyp), which indicates how long it will take for a control volume to
reach hypoxic conditions from an assumed initial oxygen concentration, varies by three orders
of magnitude in our compilation (Table 1). The largest estimates, on the order of years, were
obtained for the Gulf of St. Lawrence and the Baltic Sea; other systems have hypoxia timescales
on the order of days to weeks. As stated in Section 2, even systems with long hypoxia timescales
will become hypoxic if the oxygen supply is restricted for sufficiently long. Residence time, a
measure of ventilation, is a major factor in determining whether hypoxia occurs. This is illustrated
by comparing the large, semienclosed basins with restricted ventilation (the Baltic Sea and Gulf
of St. Lawrence) with seasonally mixed estuaries (Chesapeake Bay and Long Island Sound) and
the shelf systems summarized in Table 1. In fact, the timescale of hypoxia generation is related
to residence time (Figure 4c). As predicted in Section 2, the nondimensional number γ , which
relates the hypoxia timescale to water residence time, is less than 1 for the majority of systems
analyzed here (Figure 4c). The Pearl River Estuary has the lowest hypoxia timescale and lowest
residence time in our compilation. The Namibian shelf and Gulf of St. Lawrence are exceptions
to this pattern when a large initial concentration is assumed (as we have done for the calculations
in Table 1), further illustrating the importance of low-oxygen source water to hypoxia generation
in these systems. As discussed above, on narrow upwelling shelves, including those off Oregon
(Grantham et al. 2004, Chen et al. 2009) and Namibia (Monteiro et al. 2006, 2008), advection of
low-oxygen water onto the shelf is an important driver of hypoxia.

5. FUTURE OUTLOOK

There is a rapidly growing body of scientific literature on potential consequences of rising an-
thropogenic carbon emissions and synthetic fertilizer application for coastal biogeochemistry.
Commonly cited prospects include changes to the physical environment (e.g., warming); changes
in freshwater inputs (Sinha et al. 2017); changes in the variability and magnitude of wind forcing
(Garcı́a-Reyes et al. 2015); changes in nutrient inputs, especially in developing countries with
rapidly growing populations and expanding fertilizer-intensive farming (Seitzinger et al. 2010);
and synergies with other stressors, particularly ocean acidification (Cai et al. 2011). Continued
warming and acidification are predicted with high confidence. By contrast, the direction and mag-
nitude of changes in precipitation, wind stress, and nutrient loading are uncertain and highly
region specific. Contributing further to the challenge of projecting future hypoxia is that many
biogeochemical responses are nonlinear and compensatory and involve feedbacks that may amplify
or dampen a given interaction.
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Perhaps the most widely anticipated feature is warming, which has already been documented in
several cases that showed water temperature increases of at least 1◦C over the past 30 years (Testa
et al. 2018). Warming has the potential to increase the intensity, duration, and spatial extent of
hypoxia by increasing stratification, decreasing the solubility of oxygen in seawater, and increasing
the rate of organic matter remineralization and thus oxygen consumption. In practice, however,
these predictions may be too simplistic. In many coastal regions experiencing hypoxia (e.g., the
northern Gulf of Mexico, the East China Sea, and Chesapeake Bay), salinity has a much stronger
effect on stratification than temperature does. Indeed, in future projections for the northern Gulf
of Mexico, Lehrter et al. (2017) and Laurent et al. (2018) found only modest increases in spatial
hypoxic extent but more severe and prolonged exposure to hypoxic conditions in the future.
Laurent et al. (2018) showed that the warming-induced expansion is due mostly to a decrease
in oxygen solubility and less so to stronger stratification. For Chesapeake Bay, oxygen solubility
was also the primary driver of future hypoxia, being more important than increases in salinity
and stratification due to sea level rise (Irby et al. 2018). It is also unlikely that temperature will
strongly amplify the total annual respiratory oxygen sink that acts on a system. While there is
ample evidence that rising temperatures will speed up the respiration of freshly deposited organic
matter (Smith & Kemp 1995, Carstensen et al. 2014), ultimately respiration is determined by the
amount of organic matter available.

The potential impacts of changes in freshwater input are twofold. Larger discharges would
increase stratification, thus amplifying hypoxia, while diluting nutrients (assuming constant load)
would likely mitigate hypoxia. Both of these effects were seen in model simulations of Laurent
& Fennel (2014) for the northern Gulf of Mexico and Irby et al. (2018) for Chesapeake Bay.
On the other hand, precipitation amount, frequency, and intensity in the watershed are major
controls on riverine N load (Lee et al. 2016). By combining an empirical model of N loading
with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections, Sinha et al.
(2017) predicted that projected increases in total and extreme precipitation will elevate total N
loading in the continental United States by approximately 20% by 2100 in the business-as-usual
scenario. Projected increases are especially pronounced for the northeastern United States and
upper Mississippi/Atchafalaya River basin, regions with historically high N fluxes. Sinha et al.
(2017) also suggested that large portions of East, South, and Southeast Asia, including India and
eastern China, have similar risk factors and are therefore likely to experience large precipitation-
driven increases in N load.

The other major factor determining N loading from the watershed is N input through farming
and other land use practices. Seitzinger et al. (2010) showed that the future trajectory of N loading
is highly dependent on socioeconomic drivers. Assuming the Global Orchestration scenario (which
includes intensive agriculture and rapid increases in fertilizer use in developing countries) leads
to predictions of increasing N loads, while under the Adapting Mosaic scenario (which assumes
modest increases in global fertilizer use and moderate improvements in its efficiency), N loads
would decrease for many countries. Regardless of the scenario, large changes are expected in South
Asia (Seitzinger et al. 2010).

Projections of changes in future wind forcing are highly uncertain but can affect coastal hypoxia
in significant ways. In eastern boundary current systems, wind forcing is not only the driver of nu-
trient supply to the continental shelf but also responsible for onwelling of low-oxygen source
waters. This preconditions the Namibian and Oregon shelves to low-oxygen conditions (see
Section 3.3). A long-term shift toward more upwelling-favorable winds has been implicated in
the recent emergence of hypoxic and anoxic conditions on the Oregon shelf (Grantham et al.
2004, Garcı́a-Reyes et al. 2015). In Chesapeake Bay and Long Island Sound, observational and
modeling studies have shown the importance of both wind speed and direction in influencing the
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extent of hypoxia (Wilson et al. 2008; Scully 2010, 2016; Li et al. 2015). Increases in wind strength
could decrease hypoxia by eroding vertical stratification and aerating bottom waters, especially in
shelf regions without permanent stratification, like the northern Gulf of Mexico (Yu et al. 2015a).

Additional stressors on coastal ecosystems besides oxygen depletion are warming and acidifi-
cation (i.e., decreasing pH of seawater), the latter of which is intricately linked with low oxygen.
Acidification results principally from an accumulation of dissolved inorganic carbon due to two
distinct processes: respiration of organic matter and oceanic uptake of atmospheric CO2. Acidifi-
cation due to respiration occurs because of the same process that leads to low-oxygen conditions:
the accumulation of respiration-derived inorganic carbon without sufficient ventilation. This pro-
cess can be driven by eutrophication, as in the northern Gulf of Mexico (Cai et al. 2011, Laurent
et al. 2017), or by increased upwelling of low-oxygen, carbon-rich source waters, as on the Oregon
shelf, where the emergence of hypoxic/anoxic events described in Section 3.3.2 coincides with the
occurrence of low-pH conditions on the shelf (Feely et al. 2008). The respiration-driven acidifica-
tion is increasingly amplified by the ocean’s uptake of anthropogenic carbon from the atmosphere.
Projections for the northern Gulf of Mexico indicate that, under a business-as-usual scenario, the
pH of seasonally hypoxic waters will decrease dramatically due to uptake of atmospheric CO2,
reaching the limit for aragonite saturation by the end of this century (Laurent et al. 2018). In other
estuaries and coastal systems (e.g., Chesapeake Bay and the North Sea), pH is also predicted to
decline (Blackford & Gilbert 2007, Cai et al. 2017).

The number of projected environmental changes, their potential interactions, and uncertainty
in their magnitude and (in some cases) direction make it difficult to predict the future of coastal
hypoxia. We can state with confidence that coastal waters will warm and that their pH will decrease.
Some regions will likely see increases in freshwater and nutrient inputs, which will almost certainly
exacerbate hypoxic conditions, but changes in wind forcing remain a wild card. Numerical models
that simulate coupled physical–biogeochemical processes with increasing realism have proven
useful in elucidating the mechanistic interplay and relative importance of the different factors
contributing to hypoxia generation. They are also our best available tools for projecting into the
future.
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Meier HEM, Väli G, Naumann M, Eilola K, Frauen C. 2018. Recently accelerated oxygen consumption rates
amplify deoxygenation in the Baltic Sea. J. Geophys. Res. Oceans 123:3227–40

Mohrholz V, Bartholomae CH, van der Plas AK, Lass HU. 2008. The seasonal variability of the northern
Benguela undercurrent and its relation to the oxygen budget on the shelf. Cont. Shelf Res. 28:424–41

Monteiro PMS, van der Plas AK, Melice J-L, Florenchie P. 2008. Interannual hypoxia variability in a coastal
upwelling system: ocean–shelf exchange, climate and ecosystem-state implications. Deep-Sea Res. I 55:435–
50

Monteiro PMS, van der Plas AK, Mohrholz V, Mabille E, Pascall A, Joubert W. 2006. Variability of natural
hypoxia and methane in a coastal upwelling system: oceanic physics or shelf biology? Geophys. Res. Lett.
33:L16614

Moriarty JM, Harris CK, Friedrichs MAM, Fennel K, Xu K. 2018. Impact of seabed resuspension on oxygen
and nitrogen dynamics in the northern Gulf of Mexico: a numerical modeling study. J. Geophys. Res.
Oceans 123:7237–63

Murphy RR, Kemp WM, Ball WP. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification,
and nutrient loading. Estuaries Coasts 34:1293–309

Murrell MC, Stanley RS, Lehrter JC. 2013. Plankton community respiration, net ecosystem metabolism, and
oxygen dynamics on the Louisiana continental shelf: implications for hypoxia. Cont. Shelf Res. 52:27–38

Natl. Park Serv. 2017. Mississippi River facts. Natl. Park Serv. https://www.nps.gov/miss/riverfacts.htm
Nausch G, Nehring D, Aertebjerg G. 1999. Anthropogenic nutrient load of the Baltic Sea. Limnologica 29:233–

41
Neumann T, Fennel W, Kremp C. 2002. Experimental simulations with an ecosystem model of the Baltic

Sea: a nutrient load reduction experiment. Glob. Biogeochem. Cycles 16:1033
Neumann T, Radtke H, Seifert T. 2017. On the importance of Major Baltic Inflows for oxygenation of the

central Baltic Sea. J. Geophys. Res. Oceans 122:1090–101
Nixon SW. 1998. Enriching the sea to death. Scientific American Presents, Fall, pp. 48–53
Noffke A, Sommer S, Dale AW, Hall POJ, Pfannkuche O. 2016. Benthic nutrient fluxes in the Eastern Gotland

Basin (Baltic Sea) with particular focus on microbial mat ecosystems. J. Mar. Syst. 158:1–12
O’Donnell J, Dam HG, Bohlen WF, Fitzgerald W, Gay PS, et al. 2008. Intermittent ventilation in the hypoxic

zone of western Long Island Sound during the summer of 2004. J. Geophys. Res. Oceans 113:C09025
O’Shea ML, Brosnan TM. 2000. Trends in indicators of eutrophication in Western Long Island Sound and

the Hudson-Raritan Estuary. Estuaries 23:877–901
Paerl HW, Valdes LM, Joyner AR, Piehler MF, Lebo ME. 2004. Solving problems resulting from solutions:

evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North
Carolina. Environ. Sci. Technol. 38:3068–73

Parker CA, O’Reilly JE. 1991. Oxygen depletion in Long Island Sound: a historical perspective. Estuaries
14:248–64

Pers C, Rahm L. 2000. Changes in apparent oxygen removal in the Baltic proper deep water. J. Mar. Syst.
25:421–29

www.annualreviews.org • Biogeochemical Controls on Coastal Hypoxia 127

A
nn

u.
 R

ev
. M

ar
. S

ci
. 2

01
9.

11
:1

05
-1

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 b
y 

jte
st

a@
um

ce
s.

ed
u 

on
 0

1/
23

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://www.nps.gov/miss/riverfacts.htm


MA11CH06_Fennel ARI 8 December 2018 14:38

Qian W, Dai M, Xu M, Kao S, Du C, et al. 2017. Non-local drivers of the summer hypoxia in the East China
Sea off the Changjiang Estuary. Estuar. Coast. Shelf Sci. 198:393–99

Rabalais N, Turner R, Wiseman W Jr. 2002. Gulf of Mexico hypoxia, A.K.A. “the dead zone.” Annu. Rev.
Ecol. Syst. 33:235–63

Rabouille C, Conley DJ, Dai MH, Cai W-J, Chen CTA, et al. 2008. Comparison of hypoxia among four
river-dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Cont.
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