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A multivariate sequential data assimilation approach, the Localized Ensemble Kalman Filter (LEnKF), was
used to assimilate daily satellite observations of ocean chlorophyll into a three-dimensional physical–biolog-
ical model of the Middle Atlantic Bight (MAB) for the year 2006. Covariance localization was applied to make
the EnKF analysis more effective by removing spurious long-range correlations in the ensemble approxima-
tion of the model's covariance. The model is based on the Regional Ocean Modeling System (ROMS) and
coupled to a biological nitrogen cycle model, which includes seven state variables: chlorophyll, phytoplank-
ton, nitrate, ammonium, small and large detrital nitrogen, and zooplankton. An ensemble of 20 model simu-
lations, generated by perturbing the biological parameters according to assumed probability distributions,
was used. Model fields of chlorophyll, phytoplankton, nitrate and zooplankton were updated at all vertical
layers during LEnKF analysis steps, based on their cross-correlations with surface chlorophyll (the observed
variable). The performance of the LEnKF scheme, its influence on the model's predictive skill and on surface
particulate organic matter concentrations and primary production are investigated. Estimates of surface chlo-
rophyll and particulate organic carbon are improved in the data-assimilative simulation when compared to
one without any assimilation, as is the model's predictive skill.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Direct observation and numerical simulation are two important
means for understanding marine ecosystems: observations contain
information about the true ocean state and serve as a crucial source
for model calibration and validation; and numerical ocean models
are becoming increasingly powerful for predicting physical, biogeo-
chemical and biological processes in the ocean and can be used to
support marine management and decision-making. However, field
measurements are spatially and temporally limited due to budget,
technical and time constraints, and models are always a simplification
of the truth and never completely realistic. Given this, it is essential to
integrate observations and numerical models in order to achieve the
most accurate estimates of the true ocean state. Such integration is
best realized through data assimilation methods, which optimally
merge the information contained in observations and dynamical
models. In the context of biological modeling two qualitatively differ-
ent approaches to data assimilation are used: 1) parameter estima-
tion, which finds an optimal parameter set by minimizing the misfit
between the model and observations (e.g., Spitz et al., 1998; Fennel
1 902 494 3877.
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et al., 2001; Friedrichs et al., 2006; Bagniewski et al., 2011), and 2)
state estimation, i.e. updating the model state by utilizing the avail-
able observations as the model is integrated forward in time (e.g.
Natvik and Evensen, 2003; Nerger and Gregg, 2007; Ourmieres
et al., 2009; Mattern et al., 2010).

A widely used method for state estimation is the Ensemble Kal-
man Filter (EnKF), first introduced by Evensen (1994) to resolve
problems associated with the traditional extended Kalman filter for
cases of strongly nonlinear dynamics and large state spaces (Burgers
et al., 1998; Evensen, 2003, 2009). The EnKF is a sequential assimila-
tion technique that uses the Monte Carlo approach through ensemble
integrations. The scheme has proven to be feasible for complex
oceanographic problems including physical and biological applica-
tions and has been successfully applied to coupled physical–biological
models ranging from one-dimensional (e.g., Eknes and Evensen,
2002; Allen et al., 2003; Mattern et al., 2010) to three-dimensional
(e.g., Brusdal et al., 2003; Natvik and Evensen, 2003). The EnKF is
able to provide updates for the whole model state even if only one
variable is assimilated. This property is a consequence of the multi-
variate nature of the EnKF, which uses cross-correlations between dif-
ferent state variables. Reviews on the EnKF and its applications can be
found in Evensen (2003, 2006).

In this study, satellite observations of ocean chlorophyll were as-
similated into a three-dimensional physical–biological model of the
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Fig. 1. Map of the Middle Atlantic Bight (MAB) and its subareas used for evaluating
changes in total mass of nitrogen due to data assimilation. TS1 is a station used for
showing the evolution of the ensemble distributions.
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Middle Atlantic Bight (MAB, see Fig. 1) using a modified version of the
EnKF, the Localized EnKF (LEnKF). The LEnKF includes a covariance
localization technique (Houtekamer and Mitchell, 2001) to alleviate
the known issue of the EnKF of spurious long-range correlations
caused by limited ensemble sizes. The MAB is the section of the east-
ern North American continental shelf that extends from Nantucket
Shoals in the north to Cape Hatteras in the south. Primary production
in this system is nitrogen limited, and the seasonal cycle of chloro-
phyll and primary production is typical of a temperate continental
shelf. (For more details on the MAB, see Fennel et al., 2006 and
Lehmann et al., 2009). The Regional Ocean Modeling System
(ROMS; http://myroms.org; Haidvogel et al., 2008) coupled with the
biological nitrogen cycle model of Fennel et al. (2006, 2008) was
used as the dynamical model. The main objectives of this study are
1) to investigate the performance of the LEnKF when assimilating sat-
ellite ocean chlorophyll into the biological model and to assess im-
provements in the predictive skill for unassimilated variables (in
this case satellite-based estimates of particulate organic carbon) and
for forecasts, and 2) to analyze the impact of the multivariate data as-
similation on ecosystem evolution in terms of primary production
and the ecological state.

This paper is organized as follows: an introduction to the coupled
model, the LEnKF methodology and satellite data used for assimila-
tion and skill assessment is provided in Section 2; details of the as-
similation experiments are presented in Section 3; in Section 4
three statistical metrics used to quantify model/data consistency are
presented; and results are discussed and summarized in Sections 5
and 6, respectively.

2. Materials and methods

2.1. Model description

2.1.1. Physical model
The ROMS ocean model solves the hydrostatic, Boussinesq, primi-

tive equations in terrain-following coordinates on a structured hori-
zontal curvilinear grid. For efficiency, it employs the split-explicit
formulation that advances the depth-integrated continuity and mo-
mentum equations with a much smaller time step than the 3-
dimensional baroclinic momentum and tracer equations. The ROMS
computational kernel is described by Shchepetkin and McWilliams
(2005, 2009) and will not be detailed here. Certain features of
ROMS are attractive for coupled physical–biological modeling on con-
tinental shelves. These include a formulation of the depth-integrated
mode equations that prevents aliasing (Higdon and de Szoeke, 1997)
of unresolved signals into the slow baroclinic mode while accurately
representing barotropic motions resolved by the baroclinic time
step (e.g., tides and coastal-trapped waves). Several aspects of the
kernel minimize pressure-gradient force truncation errors that
would otherwise be problematic in terrain following coordinates
with the steep bathymetry. A finite-volume, finite-time-step discreti-
zation for the tracer equations improves integral conservation and
constancy preservation in coastal applications where the free surface
displacement can be a significant fraction of the water depth. From
among the several advection algorithm options available in ROMS,
the MPDATA (multidimensional positive definite advection transport
algorithm) scheme (Smolarkiewicz, 1984) was selected here because
its positive-definite property is particularly attractive for biological
tracers. A monotonized, high-order vertical advection scheme for
sinking biological particulate matter integrates depositional flux
over multiple grid cells so it is not constrained by the vertical CFL cri-
terion (Warner et al., 2008). The parameterization of vertical turbu-
lent mixing is the k–kl option within the Generic Length Scale
scheme as implemented in ROMS by Warner et al. (2005).

Air–sea fluxes of momentum and heat were computed using stan-
dard bulk formulae (Fairall et al., 2003) using atmospheric marine
boundary layer conditions from the North American Regional Reana-
lysis (Mesinger et al., 2006) in conjunction with the sea surface tem-
perature computed by ROMS. The vertical profile of solar shortwave
radiation is parameterized by two exponential functions following
Paulson and Simpson (1977) for assumed Jerlov water type 1. River
inflows are based on daily average observations of river discharge
from U.S. Geological Survey gauging stations on the Hudson, Dela-
ware and Connecticut rivers, and the four largest rivers entering the
Chesapeake Bay, modified to include ungauged portions of the
watershed.

Open boundary conditions for temperature, salinity, and sub-tidal
frequency velocity and sea level are taken from the same MAB and
Gulf of Maine (MABGOM) regional model (R. He and K. Chen, unpub-
lished manuscript) used as boundary conditions to the MAB shelf-
break front simulations of Chen and He (2010). Tides are added to
the low frequency boundary velocity and sea level variability using
harmonics from a regional tide model (Mukai et al., 2002). The
model domain (see Fig. 1) has 130×82 grid cells in the horizontal di-
rection and 36 layers in the vertical direction. The horizontal resolu-
tion of the model grid varies from ~5.5 km in the inner MAB to
~8.0 km in the outer MAB.

2.1.2. Biological model
The biological ROMS module used has been applied extensively in

studies of nitrogen and carbon cycling for the North American east
coast continental shelves (Fennel et al., 2006, 2008; Fennel and
Wilkin, 2009; Previdi et al., 2009; Druon et al., 2010). The model
has seven state variables: chlorophyll, phytoplankton, nitrate, ammo-
nium, small and large detrital nitrogen, and zooplankton. Photoaccli-
mation is included through the use of a time-varying ratio of
chlorophyll to phytoplankton biomass (Geider et al., 1996). For de-
tails of the model structure and governing equations see Fennel
et al. (2006). The biological model parameters used here are as in
Fennel et al. (2008); Table 1 lists some of the key parameters to
which the biological model is highly sensitive (Mattern, 2008).
These parameters are those varied (by adding perturbations drawn
from the log-normal distributions given in Table 1) in order to create

http://myroms.org


Table 1
Assumed probability distributions of biological parameters used for ensemble integrations.

Parameter description Expected value (E) Distribution Unit

Phytoplankton growth rate at 0 °C 0.69 Log-N(−0.526, 0.309) d−1

Phytoplankton mortality rate 0.15 Log-N(−2.388, 0.982) d−1

Maximum chlorophyll to carbon ratio 0.0535 Log-N(−3.796, 1.736) mg Chl mg C−1

Initial slope of the photosynthesis–irradiation curve 0.025 Log-N(−4.888, 2.398) mg C (mg Chl Wm−2 d)−1

Vertical sinking velocity for phytoplankton 0.1 Log-N(−2.929, 1.253) m d−1

Note that the expected values (E) are taken from Fennel et al. (2006). The log-normal distributions, Log-N(μ, σ), use E as the mean and E/4 as the variance (Var):
μ ¼ ln Eð Þ− 1

2 ln 1þ Var

E2

� �
, σ2 ¼ ln 1þ Var

E2

� �
.
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an ensemble of model states for the assimilation. Note that the per-
turbed parameters are mostly involved in the dynamics of phyto-
plankton and thus they have a direct impact on the concentrations
of chlorophyll and phytoplankton as well as related processes (e.g.,
primary production). Other state variables including ammonium, ni-
trate, detrital nitrogen, and zooplankton, although are affected indi-
rectly as they will respond to the changed fields during model
integration.

The coupled biological model was initialized with model fields of
chlorophyll, phytoplankton, nitrate, ammonium, detrital nitrogen
and zooplankton for January 1, 2006 from a larger scale simulation
of the Northeast North American (NENA) shelf model (Fennel et al.,
2008) and run to December 31, 2006. Concentrations of the biological
state variables along the open boundaries are also obtained from the
NENA simulation. River concentrations of ammonium, nitrate, and or-
ganic nitrogen from the U.S. Geological Survey monitoring database
were used to derive a monthly climatology for these variables and
subsequently multiplied with the freshwater flux to yield the river in-
puts of nutrients and detrital nitrogen (Fennel et al., 2006).

2.2. The LEnKF methodology

The EnKF (Evensen, 1994) is a sequential assimilationmethod that
uses ensemble integrations in order to approximate the evolution of
error statistics (i.e., estimates of the model's mean state and error co-
variances) through time. By integrating an ensemble of model states
forward in time one can approximate the time evolution of the
model state's probability density function and its associated error sta-
tistics. The method proceeds in two steps: whenever observations be-
come available, the statistical information contained in the ensemble
is combined with the observations to update the model states (re-
ferred to as analysis step); after this update, the model states are in-
tegrated forward in time using the model (referred to as forecast
step). Before the forecast step, new biological parameters are
redrawn from their respective distributions (as described above in
Section 2.1.2) for each model run in the ensemble. Instead of using
the same set of parameters for all forecast steps, the resampling of pa-
rameters is a strategy that prevents a possibly disadvantageous com-
bination of extreme parameters to prevail over the whole
assimilation period and has been used previously (Mattern et al.,
2010). The sequence of EnKF analysis and model forecast steps is iter-
ated throughout the simulation period. A brief description of the EnKF
analysis scheme follows below (for a more detailed presentation of
the EnKF implementation see Evensen, 2003, 2006).

2.2.1. EnKF analysis scheme
The EnKF is based on the update equations of the Kalman Filter

(KF); its analysis step for a model state x at a particular measurement
time is given as

xa ¼ xf þ K d−Hxf
� �

ð1Þ

where the superscripts a and f represent the analyzed (i.e.
updated) and the forecast (i.e. prior to the update) estimates,
respectively; K is the Kalman gain matrix, d contains the observa-
tions, and H is the measurement operator that maps the model
state onto the available observations. The Kalman gain matrix K is
computed as

K ¼ PfHT HPfHT þ R
� �−1 ð2Þ

where Pf and R denote the error covariance matrices for the fore-
cast estimate and the measurements, respectively; the superscript
T represents the matrix transpose. It can be seen from the above
equations that the analyzed estimate xa is a weighted combina-
tion of the forecast estimate xf and the residual between the ob-
servations and the forecast (i.e., d−Hxf). By letting xt denote the
true (unknown) state, the error covariance for the model forecast
is defined as

Pf ¼ 〈ðx
f−xtÞðxf−xtÞT〉 ð3Þ

where b> denotes the expected value.
The analysis scheme in the EnKF follows the original update equa-

tions of the KF, except that the Kalman gain matrix is computed from
the error covariances estimated by an ensemble of model states. Let
us define a matrix containing an ensemble with m members

A ¼ x1;x2; ⋯; xmð Þ: ð4Þ

The analysis equation for ensemble member xi can be written as

xa
i ¼ xf

i þ K di−Hxfi
� �

ð5Þ

where i runs from 1 to m; di is the ith member of an ensemble of ob-
servation vectors. As noted by Burgers et al. (1998), the treatment of
observations as random variables is of importance to obtain a consis-
tent formulation of the error covariances after the analysis. Each
member of the ensemble of observations is defined as

di ¼ dþ εi
i ð6Þ

where εi is a vector of measurement errors with zero mean and a co-
variance equal to R.

Within the EnKF methodology, the error covariance for the model
forecast Pf is approximated by using the ensemble mean as the best
estimate of the true state and the spread of the ensemble around its
mean as the error variance

Pf≃Pf
e ¼

1
m−1

Af−Af
� �

Af−Af
� �T

: ð7Þ

Here the overline denotes an ensemble mean; Pe
f represents the en-

semble error covariance for the model forecast, providing an approx-
imation to Pf. By defining the matrix holding the ensemble of
observations as

D ¼ d1; d2; ⋅⋅⋅;dmð Þ ð8Þ
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the EnKF analysis scheme can be expressed in terms of ensemble ma-
trices as follows

Aa ¼ Af þ Pf
eH

T HPf
eH

T þ R
� �−1

D−HAf
� �

: ð9Þ

The EnKF analysis equations formally read as those in the standard
KF except for the use of Pe

f instead of Pf. The error of such approxima-
tion to the error covariances will decrease proportional to 1=

ffiffiffiffiffi
m

p
as

the number of ensemble members m increases (Evensen, 1994).
In summary, the EnKF data assimilation methodology relies on the

representation of error statistics by an ensemble of model states. The
fundamental approximations inherent in the EnKF are the assump-
tion of Gaussian error statistics at analysis times and the use of a finite
ensemble.

2.2.2. Localization of the error covariances
The reliability of the EnKF technique primarily depends on wheth-

er the ensemble size is sufficient to provide an adequate representa-
tion of the error covariances. Given the computational cost of model
integration, the ensemble size is often limited in practical applica-
tions, especially in 3-dimensional models with large state spaces.
The limitation on ensemble size can cause spurious correlations be-
tween greatly distant grid points, which introduce noise in the analy-
sis and may result in a filter divergence. Houtekamer and Mitchell
(1998) pointed out that estimates of the background error covari-
ances between greatly distant grid points were often exaggerated
when using a small ensemble size. They also noted that a simple ap-
proach for avoiding this problem is to exclude remote observations
from the analysis of the local grid point that is being analyzed. A
method for “covariance localization” was proposed by Houtekamer
and Mitchell (2001). The idea is to localize the ensemble error covari-
ances by applying a Schur product (an element by element multipli-
cation) with a distance-dependent correlation function (Gaspari and
Cohn, 1999). Thus the error covariances associated with remote ob-
servations are removed and the conditioning of error covariance ma-
trices is improved.

Previous studies on the localization of background error covari-
ances (e.g., Hamill et al., 2001; Houtekamer and Mitchell, 2001)
have shown that the EnKF analysis can be substantially improved
with covariance localization. Based on the formulation introduced
by Houtekamer and Mitchell (2001), the EnKF analysis scheme with
the incorporation of covariance localization can be expressed as

Aa ¼ Af þ ρ∘ Pf
eH

T
� �h i

ρ∘ HPf
eH

T
� �

þ R
h i−1

D�HAf
� �

ð10Þ

where ρ denotes a correlation matrix holding correlations of local
support; the notation ρ ∘B represents the Schur product of the corre-
lation matrix ρ and an error covariance matrix B. Here ρ is deter-
mined by using a fifth-order piecewise rational function, as given by
Gaspari and Cohn (1999). By defining l as influence radius and e as
Euclidean distance between an analyzed grid point and an observa-
tion location, the correlation ψ between a grid point and an observa-
tion, i.e., an element in ρ, is calculated as

ψ l; eð Þ¼
1−1

4
e
l

� �5 þ 1
2

e
l

� �4 þ 5
8

e
l

� �3
−5

3
e
l

� �2
; 0≤e≤l;

1
12

e
l

� �5
−1
2

e
l

� �4þ5
8

e
l

� �3 þ 5
3

e
l

� �2
−5

e
l

� �
þ4−2

3
e
l

� �−1
; lbe≤2l;

0; e > 2l:

8>>><
>>>:

ð11Þ

The entries of the matrix ρ are very similar to the values of a
Gaussian function (Gaspari and Cohn, 1999). This allows one to retain
short-range correlations in the error covariance matrices and
removes the spurious long-range correlations. More specifically, ρ is
a distance-dependent function, which varies from 1 at the
observation location to 0 at the distance greater than twice of the in-
fluence radius l.

It is important to note that the filter algorithm shown in Eq. (10) is
an approximation to that in Eq. (9), and that due to the localization
only observations located within a specified distance (defined by
the influence radius) from an analyzed grid point will contribute to
the analysis in this grid point.

2.3. Satellite ocean data: chlorophyll and particulate organic
carbon (POC)

Chlorophyll data from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) and the Moderate-resolution Imaging Spectroradiometer
(MODIS) are used for the data assimilation experiment described in
Section 3. These satellite data were provided by the Northeast Fisher-
ies Science Center (Ecosystem Assessment Program) which obtained
SeaWiFS and MODIS-Aqua data from the NASA Ocean Biology Proces-
sing Group at http://oceancolor.gsfc.nasa.gov/ (Kimberly Hyde, per-
sonal communication, 2010). The ocean color scenes were
processed using SeaDAS version 5.2 standard processing and mapped
at 1.0 km pixel resolution using a Lambert conic conformal map pro-
jection. SeaWiFS and MODIS chlorophyll-a data were averaged to cre-
ate daily images. The daily chlorophyll fields were then interpolated
onto the model grid and assimilated into the three-dimensional bio-
logical model daily at model noon. It should be noted that often
data points in daily fields are missing due to clouds and inter-orbit
gaps, leading to irregular spatial and temporal sampling.

Satellite POC data from the MODIS sensor were also collected and
processed as described above. The daily POC fields were remapped to
the model grid and subsequently used as an independent validation
dataset in order to evaluate the predictive skill of the chlorophyll as-
similation and its influence on the unassimilated variables.

3. Experiment design

3.1. Ensemble size

A data assimilation experiment was performed for a model simu-
lation from January 1 to December 31 of 2006, using 20 ensemble
members. This ensemble size was chosen based on initial tests with
20, 40, and 80 ensemble members. These tests indicated that with
an ensemble size of 20 adequate estimates of statistical properties
(i.e. ensemble mean and covariances) were produced with little im-
provement for larger ensemble sizes. Therefore, considering the bal-
ance between computational requirements and accuracy, an
ensemble size of 20 was chosen for the data assimilation experiment
presented here.

3.2. Generation of the initial ensemble

All ensemble members start from identical initial conditions of the
three-dimensional ocean state and share the same atmospheric forc-
ing and boundary conditions. While absorption by chlorophyll mod-
ifies the water column profile of radiation available for
photosynthesis in the biological model, for simplicity no correspond-
ing adjustment is made to the absorption of shortwave radiation that
internally heats the water column. Consequently there is no feedback
of the biological state on ocean physics, and the ensemble members
are identical in terms of their physical circulation. Perturbing key bi-
ological parameters to which the biological model was found to be
sensitive (see Table 1) generated the ensembles of the biological
model state, as described in Section 2.1.2. The ensemble was spun
up for 10 days without any data assimilation; this allowed the
model dynamics to develop in response to the stochastic parameters.
The LEnKF analysis scheme was applied for the first time on January
11, 2006 and repeated daily until December 31, 2006.

http://oceancolor.gsfc.nasa.gov/
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3.3. Observation errors, influence radius and inflation factor

Observation errors need to be specified in order to calculate the
measurement error covariance R, but are generally poorly known.
Here, an error estimate of 35%, which was originally the target error
of the SeaWiFS project (Hooker et al., 1992), was used for the satellite
chlorophyll observations, which were also assumed to be spatially in-
dependent. Thus R turns into a diagonal matrix and its construction is
straightforward. Assuming 35% for the total errors seems reasonable,
since it results in larger absolute errors in areas where high chloro-
phyll concentrations are observed, such as the estuaries and inner
shelf of the MAB. This is consistent with the recognition that satellite
chlorophyll observations are less accurate close to the coasts. Al-
though a better representation of the observation errors would be de-
sirable for a data assimilation system, the current assumption is
sensible and appears to be of sufficient validity for the data assimila-
tion experiment presented here. The influence radius for the covari-
ance localization was set to 100 km. Additionally, an inflation factor
as introduced by Anderson and Anderson (1999) was used to inflate
the ensemble around its mean in order to account for underestimates
of the variance due to the small ensemble size. The inflation factor
was set to 1.01; that is, the forecast ensemble Af in Eq. (9) is modified
according to

Af ¼ 1:01 Af−Af
� �

þ Af : ð12Þ

3.4. Data-assimilative and deterministic model runs

A simulation with the LEnKF was performed on an ensemble of 20
model runs as described above, and is subsequently referred to as the
“data-assimilative run”. Chlorophyll observations were assimilated at
a daily interval, and chlorophyll, phytoplankton, zooplankton and ni-
trate were updated at all vertical levels during the analysis steps,
based on their covariance with surface chlorophyll. Ammonium as
well as small and large detrital nitrogen was not included in the
LEnKF updates in favor of increased computational efficiency. Includ-
ing these variables would have almost doubled the size of Pe

f , the en-
semble error covariance matrix (see Eq. (7)), which is involved in the
Fig. 2.Model bias, root mean square error (RMSE) and model efficiency (ME) between the o
ensemble mean) and the free (without any data assimilation) runs from January to Decem
multiplication in the analysis step (see Eq. (9)). As mentioned earlier,
during model integration these components will react on changes in-
duced by data assimilation according to the model dynamics.

It should be mentioned that the data assimilation was performed
on the actual chlorophyll concentrations, thus the assimilation is sub-
optimal because it violates the optimality-assumptions of the Kalman
Filter (KF). The errors in chlorophyll are approximately log-normally
distributed, while the analysis equations of the KF assume a normal
distribution. In addition, after each analysis step possible negative
concentrations that were produced by the LEnKF updates were sim-
ply set to zero; such treatment of negative concentrations was per-
formed only on 0.3% of the total grid cells throughout the
assimilation period.

In order to assess the effectiveness of the assimilation scheme and
its impacts on ecosystem evolution, the data-assimilative run is com-
pared to deterministic model runs without any data assimilation. Spe-
cifically, a deterministic run was performed for the whole time period
and is referred to as the “free run”. Additionally, 1-month determinis-
tic runs were performed starting from the optimal model states (i.e.
the analyzed ensemble mean of the data-assimilative run) at the be-
ginning of each month and are referred to as “monthly runs”.

4. Statistical metrics of model/data fit

Three statistical metrics were used to quantify model/data consis-
tency: model bias, root mean square error (RMSE) and model effi-
ciency (ME), all using spatial averaging only (see Lehmann et al.,
2009). The analyzed ensemble mean is used for the data-
assimilative run since it is regarded as the best guess estimate of
the true state.

The model bias quantifies the mean deviations between model re-
sults (M) and observations (O):

Bias tð Þ ¼ 1
n

Xn
k¼1

M k; tð Þ−O k; tð Þ½ � ð13Þ

where t and k are the temporal and spatial indices, respectively; n de-
notes the number of model/data pairs. The bias is positive when the
model overestimates the observations (considering the whole
bserved and simulated surface chlorophyll for the data-assimilative (using the analyzed
ber of 2006.

image of Fig.�2


Table 2
RMSE and correlation coefficients between the seasonal means of observed and simu-
lated variables for the free and the data-assimilative runs (see Fig. 3): (a) surface chlo-
rophyll and (b) surface POC.

Model
run

Winter
(Dec–Feb)

Spring
(Mar–May)

Summer
(Jun–Aug)

Autumn
(Sep–Nov)

RMSE Corr RMSE Corr RMSE Corr RMSE Corr

(a) Chl (mg m−3)
Free run 0.29 0.79 0.36 0.53 0.31 0.79 0.35 0.69
Ens. mean 0.17 0.93 0.14 0.93 0.15 0.94 0.15 0.95

(b) POC (mg l−1)
Free run 0.22 0.86 0.24 0.67 0.28 0.76 0.23 0.74
Ens. mean 0.19 0.92 0.19 0.78 0.21 0.84 0.12 0.91
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domain), while a negative bias reflects underestimation of the
observations.

The RMSE quantifies the deviations between model results and
observations in a least-squares sense:

RMSE tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
k¼1

M k; tð Þ−O k; tð Þ½ �2
vuut ð14Þ

and is always greater than or equal to zero. The smaller the RMSE the
better the model/data fit.

ME measures the deviations between model and observations rel-
ative to the variability in the observations:

ME tð Þ ¼ 1−
Xn
k¼1

M k; tð Þ−O k; tð Þ½ �2
,Xn

k¼1

O k; tð Þ−1
n

Xn
k¼1

O k; tð Þ
" #2

; ð15Þ

and is always less than or equal to one, with ME=1 indicating a per-
fect model prediction. Positive values of ME suggest that the model is
a better predictor than the observational climatology, while negative
Fig. 3. Seasonal mean distribution of surface chlorophyll for the observations (denoted “clim
and (b) spring (March–May). See Table 2 for quantitative measures of agreement (RMSE a
values of ME indicate that the observational climatology is a better
predictor than the model.

5. Results and discussion

Results of the model experiments are presented and discussed in
this section. First, the overall performance of the data assimilation
system is investigated, i.e., the impact of the LEnKF scheme on the ob-
served variable (surface chlorophyll) and on the unobserved vari-
ables. This is done 1) by comparing surface chlorophyll from the
free run (without any assimilation) and from the assimilative run to
the chlorophyll observations, 2) by comparing simulated particulate
matter with independent satellite POC observations, and 3) by illus-
trating the temporal evolution of the ensemble distributions. In addi-
tion, predictive skill of the assimilative model is analyzed by
comparing surface chlorophyll between the monthly runs and the
free run. Finally the influence of assimilating surface chlorophyll ob-
servations on chlorophyll at depth and on other model components
(specifically nitrate, phytoplankton biomass and primary production)
is assessed.

5.1. Performance of the data assimilation system

5.1.1. Comparison with the assimilated chlorophyll data
Model bias, RMSE andME (see Eqs. (13)–(15)) were calculated for

surface chlorophyll for the free and assimilative runs to quantitatively
evaluate the effect of the chlorophyll assimilation (Fig. 2). As
expected, the LEnKF scheme drives the model state closer to the ob-
servations, yielding smaller RMSE and larger ME values for the analy-
sis relative to the free run. However, the model bias is not improved
consistently (during March the bias is smaller for the free run),
which is a consequence of the spatial averaging involved in the bias
calculation.

RMSE and correlations of the seasonal mean surface chlorophyll
between the observations and the free and the assimilative runs are
given in Table 2. It is clear that the free run provides fairly good
atology”), the free run and the assimilative run in: (a) winter (December–February);
nd correlation) between these fields.

image of Fig.�3


Fig. 4. Relative difference between the POC RMSE from the data-assimilative run (using the analyzed ensemble mean) and from the free run from January to December of 2006. The
light gray areas mark periods when the RMSE of the data-assimilative run is larger than that of the free run.
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estimates of the surface chlorophyll during the winter, summer and
autumn, with the best model performance observed in summer;
compared to the free run, the assimilation provides substantial im-
provements to the chlorophyll estimates in all four seasons. Global-
ly, the model captures the observed inshore–offshore gradient in
surface chlorophyll (see Fig. 3 for the winter and spring), with
high concentrations in the nearshore areas of the MAB and decreas-
ing toward the offshore. The model performs less well in spring
(see Fig. 3b) compared to the other seasons: in spring, the free
run overestimates surface chlorophyll on the outer shelf and the
slope water; in the data-assimilative run, the model/data consisten-
cy is notably improved, as shown in Table 2 (also indicated by
RMSE and ME in Fig. 2).

It should be noted that the results presented here are a direct con-
sequence of the specified observation errors, since the strength of the
state update by the LEnKF scheme depends to large degree on the un-
certainty in the observations relative to that in the model state. The
smaller the observation error the closer the updated model state
will resemble the observations.

5.1.2. Predictive skill of the assimilation system
The chlorophyll comparisons in the previous section show that the

assimilation system works as expected. Here it is tested whether the
Fig. 5. Chlorophyll RMSE of the monthly runs minus that of the free run for February to Dece
which started from optimal initial conditions, has a smaller RMSE than the free run by at lea
ferences for the first time become smaller than or equal to −0.05 and 0, respectively.
assimilation system improves the representation of independent ob-
servations and whether predictive skill is improved. To test the for-
mer, comparisons are performed with satellite POC observations
and with the deterministic monthly runs (as described in Subsection
3.4). Specifically, the model-predicted particulate organic nitrogen
was calculated by summing phytoplankton, zooplankton and the
two detrital nitrogen components, and was then used to estimate
POC assuming the Redfield ratio of 106C:16N; the estimated POC
fields from the free and assimilative runs are then compared to the
POC observations. In addition, it would have been desirable to vali-
date the assimilation system against independent in situ observa-
tions. However, this was not possible due to the lack of such
observations. In order to test whether predictive skill is improved,
surface chlorophyll from the monthly runs is compared with satellite
data that was not yet used for assimilation.

Spatially averaged RMSEs were calculated for the observed and
simulated surface POC for the data-assimilative and free runs and
their relative differences are shown in Fig. 4. Most of the time (but
not always) the POC estimates are improved by the chlorophyll as-
similation relative to the free run (indicated by negative RMSE differ-
ences in Fig. 4); the assimilation improves ~78% of the POC estimates
over time. The improvement is well visible in spring, when large cor-
rections to the surface chlorophyll are observed (see RMSE in Fig. 2).
mber of 2006. The white portion of each panel indicates for how long the monthly run,
st −0.05 [mg m−3]. The light and dark gray regions mark periods when the RMSE dif-
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However, alterations of the model state due to the LEnKF updates also
lead to deterioration of the POC estimates on some occasions (indicat-
ed by positive RMSE differences and gray shading in Fig. 4). This may
be partly due to the fact that the two detrital nitrogen components
are not directly updated by the assimilation, and therefore no system-
atic improvement can be expected for these two components as well
as the related POC. It is also possible that estimates of phytoplankton
or zooplankton deteriorate during the updates. RMSE and correla-
tions of the seasonal mean surface POC between the observations
and the two model runs are displayed in Table 2 as well. It is shown
that the assimilation improves the POC estimates over all four seasons
compared to the free run; corrections to the surface POC are a bit
weaker than corrections to the surface chlorophyll (see Table 2),
which is expected given that no POC data was assimilated.

Fig. 5 shows the differences of spatially averaged RMSEs of surface
chlorophyll between the monthly and the free runs. From these plots
it is evident that the LEnKF updates have a positive impact on the pre-
dictive skill with smaller RMSEs in the monthly runs for up to 25 days
after initialization with an optimized state. The improvement in the
predictive skill is time-dependent; it is most pronounced and persis-
tent in March, April and November where improvements are appar-
ent for about two or three weeks after initialization. In some
months like February and July, however, the influences of the assim-
ilation on the predictive skill are small; occasionally the simulation
was even dragged away from the observations. As noted earlier,
Fig. 6. Ensemble distributions of the concentrations of chlorophyll, phytoplankton, nitrate a
April (left panel) and during September (right panel). Black dots correspond to the observ
region between the ensemble minimum and maximum, and the dark gray area marks the
data assimilation steps. Note that scales change.
state variables other than chlorophyll including those directly
updated by the assimilation and those affected only indirectly could
improve or deteriorate the model state in the assimilative run. As
the impact of the assimilation registered in the updated variables
gradually diminishes with time, the simulation of the monthly runs
reverts back to a state close to that predicted by the free run.

An open question is whether the multivariate EnKF is capable of
improving the evolution of unobserved variables that are part of the
state vector and updated during assimilation steps, i.e. chlorophyll
below the surface mixed layer and phytoplankton, zooplankton and
nitrate. In twin experiments it has been shown the EnKF (Eknes and
Evensen, 2002) and the Singular Evolutive Extended Kalman (SEEK)
filter (Carmillet et al., 2001) produce successful updates for unob-
served variables. However, these findings do not necessarily translate
to realistic applications where real observations are used. For exam-
ple, Triantafyllou et al. (2007) and Fontana et al. (2009) showed
that assimilation of surface variables does not necessarily improve
state variables below the surface mixed layer. The results described
here show that the multivariate LEnKF analysis results in a marked
improvement in surface chlorophyll compared to the free run, im-
proves the model's predictive skill, and appears to have a positive im-
pact on the unassimilated variables (indicated by improvements in
POC estimates). However, it should be noted that the unobserved var-
iables and the predictive skill are not always improved and that an
improvement in POC does not necessarily imply an improvement in
nd zooplankton at the surface for station TS1 (see Fig. 1 for its location) during March–
ations. The solid blue line indicates the ensemble mean. The light gray area marks the
region showing a standard deviation of the ensemble. Black vertical lines indicate the
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its individual components (phytoplankton, zooplankton, small and
large detritus).

5.1.3. Time evolution of the ensemble distributions
The temporal changes in the ensemble distributions for the station

TS1 (see Fig. 1 for its location) are shown in Fig. 6 for two periods, in-
cluding one during March–April and one during September. These
two selections correspond to a period with relatively high primary
production (and relatively large updates of surface chlorophyll by
the LEnKF analysis, see Fig. 2) and a period with low primary produc-
tion (and weak updates of surface chlorophyll), respectively. Note
that due to the localization (see Section 2.2.2) the analysis in TS1 is
only affected by observations located within the specified influence
radius from TS1; whenever no observation is available within this ra-
dius (e.g., during March 24–25), the ensemble remains and passes
onto the next model forecast step. Sometimes no observations are
available at the exact location of TS1, but within the influence radius.
From Fig. 6 it can be seen that at the observation times the shifts of
the ensemble mean and variance due to the LEnKF updates are evi-
dent. The LEnKF analysis is able to force the ensemble closer to the
observations (even moving out of its previous range, see e.g., the up-
date on September 12), even if the ensemble spread is small. The
small estimated variance suggests that the model error (based on pa-
rameter perturbations following a log-normal distribution, see
Table 1) may have been chosen too small. The variance of the ensem-
ble decreases during the assimilation step, and then increases again
during the forecast step in response to nonlinear model dynamics.
The multivariate LEnKF scheme also affects the unassimilated vari-
ables, including phytoplankton, nitrate and zooplankton. The vari-
ance of the ensemble for these variables generally decreases during
the assimilation, although much less so than for chlorophyll. When
compared to autumn, the ensemble spread is relatively large during
spring, which can primarily be attributed to the relatively intense bi-
ological processes in spring (i.e., spring bloom).

As noted earlier, the analyzed estimates of model variables rely to
a large degree on the errors in the observations and in the model.
Fig. 7. Differences of chlorophyll, nitrate and phytoplankton biomass for the upper 150 m o
data-assimilative and the free runs (left panel) and the absolute cumulative changes due
changes were calculated by averaging the daily absolute differences between the analyzed
Thus, assuming a smaller observation error could lead to larger up-
dates during the analysis. Furthermore, this could also result in a
higher degree of convergence of the ensemble, that is, a larger reduc-
tion of the ensemble spread. However, it is unclear how such a reduc-
tion of the variance would affect the effectiveness of the date
assimilation. Further work is required to evaluate the influence of
the observation error on the performance of the assimilation system,
but this is beyond the scope of the present study.

5.2. Impact of the assimilation on the ecological state and primary
production

During LEnKF analysis steps, unobserved variables are updated
according to the ensemble-prescribed covariances between the unob-
served and observed state variables. In order to assess the impact of
the assimilation system on subsurface layers and on other biological
variables, differences of chlorophyll, nitrate and phytoplankton bio-
mass along a cross-shelf transect (see Fig. 1 for its location) between
the assimilative and the free runs as well as the cumulative direct
changes of the biological variables during LEnKF updates are dis-
played for winter and spring in Fig. 7. This figure allows one to differ-
entiate between direct changes during LEnKF updates and indirect
changes that result from the model dynamics acting upon the
updated fields. As can be seen in the absolute cumulative changes
for chlorophyll in spring, the LEnKF propagates surface information
only within the top 50 m. Changes in nitrate and phytoplankton bio-
mass, however, appear to be mostly due to indirect responses of the
model dynamics to the updated fields. The assimilation mainly affects
the ecological state in the upper 50 m of the water column, which is
most evident for chlorophyll in spring (Fig. 7b). Interestingly, in all
seasons (see Fig. 7 for the winter and spring, other seasons not
shown) phytoplankton biomass tends to increase while chlorophyll
tends to decrease in the data-assimilative run compared to the free
run. This implies a decrease in the ratio of chlorophyll to phytoplank-
ton biomass. In the data-assimilative run, nitrate tends to decrease
due to the uptake by phytoplankton for growth; that is, an increase
f the water column along a cross-shelf transect (see Fig. 1 for its location) between the
to the LEnKF updates (right panel) in the winter (a) and spring (b). The cumulative
and the forecast ensemble means over each season.

image of Fig.�7


Fig. 8.Mean distribution of vertically integrated primary production (unit in mmol N m−2 d−1) for the data-assimilative run and the differences between the data-assimilative and
the free runs in the winter (a) and spring (b).
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in phytoplankton biomass leads to a decrease in nitrate. Zooplankton
generally follows the seasonal pattern of phytoplankton due to the di-
rect link of the two through predation (results not shown).

Note that the data assimilation includes all vertical layers in the
LEnKF updates, but, as stated above, changes of the ecological state
due to the assimilation are notable only in the upper 50 m of the
water column, probably because correlations between the between
mixed layer and waters below are small. In order to quantitatively
Fig. 9. Comparison of monthly means of total mass of nitrogen in the upper 100 m of the wa
data-assimilative runs. Note that scales change.
evaluate whether these changes improve the model solution vertical
profiles of chlorophyll, nutrients, etc. would be required, but are not
available here.

Associated with changes in phytoplankton biomass, chlorophyll
and nutrient concentrations are changes in primary production. Pri-
mary production depends on the growth rate of phytoplankton and
its biomass, where the growth rate is a function of temperature, pho-
tosynthetically available radiation and nutrient concentrations. Note
ter column in the four MAB subareas (see Fig. 1 for their locations) for the free and the
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that changes in chlorophyll and nutrient concentrations can affect
primary production via light limitation (due to the effect of self-
shading) and nutrient limitation, respectively, although changes in
phytoplankton biomass typically dominate. A comparison of the sea-
sonal means of vertically integrated primary production for the free
and the data-assimilative runs is given for winter and spring in
Fig. 8. Simulated primary production is highest on the MAB shelf
and lowest in the slope waters and Gulf Stream adjacent to the oligo-
trophic Sargasso Sea. Globally, primary production in the data-
assimilative run is higher than in the free run, but has a similar spatial
pattern. The data assimilation elevates phytoplankton biomass across
the upper water column (as illustrated in Fig. 7), which contributes to
the increased primary production evident on the MAB shelf. The in-
crease in primary production due to data assimilation is most pro-
nounced in spring (Fig. 8b).

Another important question is the impact of the data assimila-
tion on the total mass of nitrogen, given that the LEnKF does not
ensure mass conservation. In order to assess whether and to
what extent nitrogen was added or removed, the total nitrogen
content (TN) was calculated for the subareas shown in Fig. 1. TN
was calculated by summing phytoplankton, ammonium, nitrate,
zooplankton, and small and large detrital nitrogen, and integrating
them over each subarea. Fig. 9 presents the monthly mean TN in
the upper 100 m of the water column (i.e. the region where
changes of the model state due to data assimilation are notable)
for the free and the assimilative runs in the southern inner MAB
shelf, the outer MAB shelf, the slope waters, and the Gulf Stream.
The data assimilation increases TN in all subareas (except on the
outer MAB shelf), primarily by adding phytoplankton biomass
and nitrate. The increase in TN is more pronounced on the slope
waters and the Gulf Stream than on the inner MAB shelf. When
compared to the free run, TN in the data-assimilative run increases
by 2.5%, 3.0%, and 3.8% on the slope waters, the Gulf Stream, and
the inner MAB shelf, respectively, over the assimilation period,
while on the outer MAB shelf TN decreases by 0.7%. The TN
added in these subareas amounts to about 16, 8.5, 1.2, and
−1.9×1011 mmol N, respectively, which is about an order of mag-
nitude smaller than the nitrogen discharged by the rivers
(~2.7×1013 mmol N).
6. Conclusions

Satellite ocean chlorophyll data was assimilated into a three-
dimensional biological model of the MAB at a daily time step
from January to December of 2006. The data assimilation is per-
formed by using the EnKF method combined with a covariance lo-
calization approach, which was implemented to filter out spurious
long-range correlations in the EnKF analysis. Experiments were
conducted in order to assess the effectiveness of this data assimila-
tion system, its predictive skill and effect on unobserved variables,
and its influence on the temporal and spatial evolution of the eco-
logical state and primary production. Results indicate that the data
assimilation improved the model behavior at the surface when
compared to the free run, for example, model estimates of surface
POC, which was not assimilated, improved notably. The assimilation
also had a positive impact on the model's predictive skill, in the
sense that simulations that started from optimal analysis fields
had smaller RMSEs than a non-assimilative free run. The improve-
ment in the predictive skill is time-dependent and varies greatly
with the seasons. The data assimilation caused notable changes in
the MAB ecosystem in terms of primary production and the ratio
of chlorophyll to phytoplankton biomass. As the LEnKF does not en-
sure mass conservation, changes in total nitrogen were quantified
and found to be an order of magnitude smaller than nitrogen in-
puts form rivers.
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