
Author's personal copy

Sequential data assimilation applied to a physical–biological model for the Bermuda
Atlantic time series station

Jann Paul Mattern a, Mike Dowd b,⁎, Katja Fennel a

a Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
b Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 11 December 2008
Received in revised form 12 June 2009
Accepted 3 August 2009
Available online 12 September 2009

Keywords:
Data assimilation
Ensemble Kalman filter
Sequential importance resampling
Ecosystem model
1D ocean model
Bermuda Atlantic Time Series study
General Ocean Turbulence Model

In this study, we investigate sequential data assimilation approaches for state estimation and prediction in a
coupled physical–biological model for the Bermuda Atlantic Time Series (BATS) site. The model is 1-
dimensional (vertical) in space and based on the General Ocean Turbulence Model (GOTM). Coupled to
GOTM is a biological model that includes phytoplankton, detritus, dissolved inorganic nitrogen, chlorophyll
and oxygen. We performed model ensemble runs by introducing variations in the biological parameters,
each of which was assigned a probability distribution. We compare and contrast here 2 sequential data
assimilation methods: the ensemble Kalman filter (EnKF) and sequential importance resampling (SIR). We
assimilated different types of BATS observations, including particulate organic nitrogen, nitrate+nitrite,
chlorophyll a and oxygen for the 2-year period from January 1990 to December 1991, and quantified the
impact of the data assimilation on the model's predictive skill. By applying a cross-validation to the data-
assimilative and deterministic simulations we found that the predictive skill was improved for 2-week
forecasts. In our experiments the EnKF, which exhibited a stronger effect on the ensemble during the
assimilation step, showed slightly higher improvements in the predictive skill than the SIR, which preserves
dynamical model consistency in our implementation. Our numerical experiments show that statistical
properties stabilize for ensemble sizes of 20 or greater with little improvement for larger ensembles.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Ecological and biogeochemical descriptions of the oceans' state rely
increasingly on a combination of numerical oceanmodels and available
observations through data assimilation in order to achieve realistic
simulations and improved forecast abilities (Doney et al., 2001).
Ecological andbiogeochemicalmodelswithvarying levels of complexity
and coupled to realistic ocean circulation models are under active
development (McGillicuddy et al., 2003; Kantha, 2004; Fennel et al.,
2006; Rothstein et al., 2006; Wiggert et al., 2006; Kishi et al., 2007;
Fennel et al., 2008). While new types of interdisciplinary observations
from autonomous sensors are becoming available, the models still
rely largely on traditional time-series and satellite data for calibration
and validation. Given both, the partial observability of the system and
the inherent uncertainty in themodel formulations, the development of
efficient and effective data assimilation approaches is important for
progress in ecological and biogeochemical prediction (Hofmann and
Friedrichs, 2001; Bertino et al., 2003; Arhonditsis and Brett, 2004).

Two general types of biological data assimilation have been used:
variational and sequential methods. Variational approaches as applied

to biological models have mostly focused on parameter optimization
where model parameters are calibrated by minimizing the model's
misfit against available data, and for the purpose of assessing different
model configurations (Lawson et al., 1996; Fennel et al., 2001;
Friedrichs, 2001; Friedrichs et al., 2007; Schartau et al., 2001; Spitz
et al., 2001). Such calibrated models can form the basis for sequential
data assimilation. Sequential data assimilation focuses on predictive
online state estimation, i.e. an alteration of the model's state, taking
into account the available observations as the model is being
integrated forward in time (Bertino et al., 2003). A popular sequential
approach in oceanography and meteorology is the ensemble Kalman
filter (EnKF; Evensen, 2003, 2006). It has been employed successfully
for biological ocean models (Allen et al., 2003; Evensen, 2003; Natvik
and Evensen, 2003; Lenartz et al., 2007). A lesser-used alternative is
Sequential Importance Resampling (SIR), which is well established in
the fields of statistics and engineering (Gordon et al., 1993; Kitagawa,
1996; Ristic et al., 2004). SIR has been investigated in the context of
biological ocean modelling using only simple box models (Losa et al.,
2003; Dowd, 2007).

In this study, we investigate the use of the EnKF and SIR for
biological data assimilation using observations from the Bermuda
Atlantic Time Series (BATS) site (Steinberg et al., 2001). Our dynamic
model is 1-dimensional (1D; depth-resolved) in space, uses the
General Ocean Turbulence Model (GOTM, Burchard et al., 1999, www.
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gotm.net) as its physical framework, and is coupled to a set of
biological equations based on Fennel et al. (2006).

The objectives of our study are an application of the 2 sequential
ensemble assimilation methods (EnKF and SIR) to our system, and a
comparative assessment of their potential use for state estimation in
operational ocean prediction. Our paper is organized as follows: in
Section 2we introduce our coupled physical–biological model and our
approach to ensemble generation based on stochastic parameters; in
Section 3we briefly review the EnKF and SIR and their application.We
report results of our simulations and data assimilation experiments in
Section 4, and discuss our main findings in Section 5.

2. Model description

Our physical–biological model uses a relatively simple represen-
tation of euphotic zone nitrogen cycling coupled with a 1D physical

model of the upper ocean. It is implemented for the BATS site at
30°40'N, 64°10'W in the Sargasso Sea. The biological module includes
the following 5 state variables: dissolved inorganic nitrogen, phyto-
plankton biomass and chlorophyll, detritus, and oxygen (Table 1), and
is described in more detail below. Our physical model is GOTM
(Burchard et al., 1999), whichwe implemented for the top 350 mwith
a vertical resolution of 1 m.Weuse the k-epsilonmixing scheme (Rodi,
1987) and force the model with daily wind stresses, air temperatures,
air pressures, and relative humidity values from the NCEP reanalysis
data set (Kalnay et al., 1996, www.noaa.gov). Nitrate is clamped to its
climatological mean concentrations at 350 m depth, all other biolog-
ical variables are not constrained at the bottom. Sinking organicmatter
leaves the model domain upon reaching the bottom boundary.

The BATS site is characterized by the frequent passage of
mesoscale eddies, which are known to influence the biological
dynamics through vertical displacements of isopycnals but are not
resolved in our 1Dmodel. In order to capture the influence of shoaling
and deepening isopycnals on the mixed layer depth, we nudge model
temperatures and salinities to their corresponding observed profiles.
Without nudging, the model significantly underestimates observed
mixed layer depths, which we calculated as the depth at which the
water temperature first drops 0.5 °C below the surface temperature.
We found that a nudging time scale of 7 days results in a close
agreement between model-simulated and observed values of mixed
layer depth (Fig. 1) with a coefficient of determination (R2) of 86%
compared to 52% for a nudging time scale of 1 month.

Table 1
Biological model variables.

Name Unit Description

Phy mmol Nm−3 Phytoplankton concentration
Det mmol Nm−3 Detritus concentration
DIN mmol Nm−3 Concentration of dissolved inorganic nitrogen
Chl mg chlorophyll am−3 Chlorophyll a concentration
Oxy mmol Om−3 Oxygen concentration

Fig. 1. Observed and model-simulated temperature (top panels, left and right respectively) and salinity (bottom panels) as well as mixed layer depth (solid line).
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Our biological model describes dissolved inorganic nitrogen (DIN),
phytoplankton biomass (Phy), phytoplankton chlorophyll (Chl),
detritus (Det) and oxygen (Oxy) and is a simplified version of the
model of Fennel et al. (2006). As illustrated in Fig. 2, the 3 nitrogen-
based variables DIN, Phy, and Det describe a highly simplified nitrogen
cycle while Chl and Oxy mainly serve diagnostic purposes.

The general equation for a biological variable C is

∂C
∂t −

∂
∂z Kt

∂C
∂z

� �
= SMSðCÞ; ð1Þ

where Kt refers to the turbulent diffusivity and SMS(C) denotes local
sources minus sinks of C. The local sources and sinks of phytoplankton
biomass are growth, mortality and sinking according to

SMSðPhyÞ = μðDIN; I; TÞPhy−mPhyPhy−wPhy
∂Phy
∂z : ð2Þ

The phytoplanktonmortality ratemPhy and the phytoplankton sinking
rate wPhy are constant, while the phytoplankton growth rate μ
depends on the nutrient concentration DIN, the photosynthetically
available light I and temperature T as follows

μðDIN; I; TÞ = μmaxðTÞ
αIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2
max + α2I2

q DIN
kDIN + DIN

: ð3Þ

Here kDIN is the half-saturation concentration for nutrient uptake,
μmax(T)=μ01.066 T is the temperature-dependent maximum growth
rate, and α is the initial slope of the photosynthesis–irradiance curve.
The photosynthetically available light at depth z is given by

I = IðzÞ = I0 par expð−zkwater−∫z
0 kChl ChlðηÞdηÞ; ð4Þ

where I0 is the incoming light just below the ocean surface and
par=0.43 represents the fraction of light used in photosynthesis. The
coefficients kwater=0.05 m−1 and kChl=0.03 (mg chlorophyll)−1m−1

account for light attenuation due towater and chlorophyll, respectively.
The source and sink terms of detritus are phytoplankton mortality,

remineralization and vertical sinking:

SMSðDetÞ = mPhyPhy−rDetDet−wDet
∂Det
∂z ; ð5Þ

where rDet and wDet are the remineralization and sinking rates of
detritus, respectively.

The source and sink terms of DIN are detritus remineralization and
nutrient uptake by phytoplankton:

SMSðDINÞ = −μPhy + rDetDet: ð6Þ

We included Chl as a separate state variable because the ratio of
phytoplankton biomass to chlorophyll is known to vary dramatically
with depth in oligotrophic waters such as the Sargasso Sea (Fennel
and Boss, 2003). These variations are due to photoacclimation, the
process by which phytoplankton cells regulate their internal chloro-
phyll levels depending on ambient light and nutrient conditions, and

has been described mechanistically by Geider et al. (1996, 1997). The
Chl equation:

SMSðChlÞ = ρChl μ Phy−mPhyChl−wPhy
∂Chl
∂z ; ð7Þ

follows directly from Eq. (2), but includes the factor ρChl to account for
photoacclimation. ρChl is defined as

ρChl =
θmax μ Phy
α I Chl

; ð8Þ

where θmax is the maximum ratio of the chlorophyll to phytoplankton
concentration and μ Phy

α I Chl
represents the ratio of achieved-to-maximum

potential photosynthesis (Geider et al., 1997).
Oxygen is produced during photosynthesis, consumed during the

remineralization of detritus and exchanged with the atmosphere at
the sea surface. The oxygen sources and sinks are as follows:

SMSðOxyÞ = rO2:N μ Phy−rO2:N rDet Det +
vkO2

h
ðOxysat−OxyÞ; ð9Þ

where rO2:N=8.625 mol O2/mol N is the oxygen to nitrogen
stoichiometry, vkOxy is the gas exchange coefficient for oxygen,
h=1m is the thickness of the topmost model layer, and Oxysat is
the oxygen saturation concentration. The last term in Eq. (9)
parameterizes the air–sea gas exchange and is only present in the
model's top layer. The oxygen saturation concentration Oxysat is
dependent on temperature and salinity and calculated following
Garcia and Gordon (1992). We parameterized the gas exchange
coefficient vkOxy after Wanninkhof (1992) as

vkOxy = 0:31u2
10

ffiffiffiffiffiffiffiffiffiffiffi
660
ScOxy

s
: ð10Þ

Here u10 is the wind speed 10 m above the ocean surface, and ScOxy is
the Schmidt number, calculated based on Wanninkhof (1992).

We initialized the model with BATS data of nitrate+nitrite,
chlorophyll a, oxygen, temperature and salinity for October 1, 1989, and
assumed an initially homogeneous concentration of 0.01 mmol Nm−3

for phytoplanktonbiomass anddetritus.Weallowed themodel to spinup
for 3 months and then ran the simulations for 2 years from January 1,
1990 to December 31, 1991. During this period, additional data
were available from the BATS bloom cruises which took place from
January to April, coinciding with the annual phytoplankton bloom.
Thebloomcruises are inaddition to themonthly core cruises and improve
the temporal resolution of the bloom from monthly to bi-monthly or
higher.

Initially we chose a set of biological parameters based on typical
literature values, but then determined an optimal set of biological
parameters by minimizing the misfit between model-predicted and
observed values of PON (Phy+Det) and Chl using a genetic algorithm
(Mattern, 2008). The biological parameters before and after the
optimization are listed in Table 2.

The simulated biological variables are shown in comparison with
the observations in Fig. 3. The model displays the typical seasonal
cycle, with deep mixing events during late winter and early spring
that provides the surface region with a supply of nutrients and fuels a
surface phytoplankton bloom. During the rest of the year phyto-
plankton in the top 80 m, where light is abundant, is mainly nutrient-
limited and a deep chlorophyll maximum establishes itself at the base
of the euphotic zone. Oxygen is generally higher in the top 100 m,
where net oxygen production occurs due to photosynthesis, and
decreases at depth due to remineralization of sinking organic matter.
During summer, whenwater temperatures in the shallowmixed layer
reach values of 26 °C and higher, oxygen outgasses from the ocean
due to reduced solubility.Fig. 2. Schematic of the biological model component.
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For the purpose of sequential assimilationwe performed ensemble
runs of the model. The ensemble members use identical initial and
forcing data, but differ in their biological parameters, a subset of
which we perturbed randomly and independently around the optimal
parameter set assuming a log-normal distribution. We used the log-
normal distribution because it is non-negative, thus preventing
negative parameter values, and because it is skewed, thus allowing
large parameter values well above themean to be drawn occasionally.
We chose the particular subset of stochastic parameters (Table 3)
based on a sensitivity analysis (Mattern, 2008). The distributional
parameters for the log-normal distributions were based on the
optimal values to specify the mean and plausible range of their
variation to set the variance.

The mean of our stochastic ensemble simulations is similar to the
deterministic run. As one would expect, the variance of the ensemble
is small below 150 m, where phytoplankton growth is not possible
due to insufficient light. The ensemble variance is maximum at the
nutricline (see Fig. 1 of Supplementary Online Material).

3. Sequential data assimilation using ensemble methods

The state of our biological system at any time is defined by the
vector X containing all the biological variables, at all the model grid
points, i.e.

X = ðPhy1;…; Phy350;Det1;…;Det350;

DIN1;…;DIN350;Chl1;…;Chl350;Oxy1;…;Oxy350Þ′;
ð11Þ

where the subscripting on each variable represents the vertical grid
cell index. (Any explicit dependence on time is suppressed at this
stage.) Therefore, X is a 5 (variables)×350 (layers)=1750×1
dimensional vector (the superscript ′ represents the matrix trans-
pose). There is no feedback from biology to the physical model, so
physical variables are not part of the state vector. The forecast
ensemble generation outlined above produces a set of nens state
vectors at any time of interest, which is denoted as {X(i)}i=1

nens , where i is
the numerical identifier for a particular ensemble member. (Note that
the curly braces denote the full ensemble, and when they are omitted
we are referring to an individual ensemble member.)

Ensemble-based sequential data assimilation estimates the system
state as it evolves through time, approximating the probability
density function of the system state by an ensemble that represents
a sample whose properties reflect the distributions of interest (Ristic
et al., 2004). More precisely, sequential ensemble methods approx-
imate the probability distribution (or its moments) of the nowcast
state using all available measurements up to and including the
analysis time. We designate these as y1:τ=(y′1, y′2,…,y′τ)′, where the
individual yt are column vectors of the available observations at time
t. Following convention, the time index has integer values t=1, 2,…,τ
that correspond to the times at which observations are available; this
time indexing will also be incorporated as a subscript on X.

Consider the single stage transition of the system from one
observation time to the next, i.e. time t−1 to t. This is a 2-step process
involving prediction and update (or assimilation). Starting with the
nowcast at time t−1, the state of the system can be described by the
probability distribution of Xt−1 given all observations, y1:t−1, up to
time t−1; this is designated p(xt−1|y1:t−1). The prediction step then
performs a forecast using this initial condition, i.e. it transforms the
nowcast p(xt−1|y1:t−1) into the forecast distribution p(xt|y1:t−1),
which is the probability distribution of Xt given observations up to t−1.
When the new observations yt become available at time t, the
assimilation step updates the forecast using the additional information
in yt, which yields p(xt|y1:t), the nowcast distribution at time t. This new
nowcast is thenused as the starting point for the next prediction step and
so on, sweeping forward through time (for more details, see Dowd,
2007).

For the assimilation step, the probability distribution required is
the forecast distribution p(xt|y1:t−1), which is approximated by the
forecast ensemble {Xt|t−1

(i) }i=1
nens . This forecast ensemble is produced by

the stochastic simulation that started with an ensemble characteriz-
ing the nowcast at time t−1 ({Xt−1|t−1

(i) }i=1
nens ), as described in

Section 2. With the extra information available at time t, via the
new observation yt, the nowcast probability distribution p(xt|y1:t)
becomes the desired target quantity, approximated by an associated
nowcast ensemble {Xt|t

(i)}i=1
nens . SIR and the EnKF are Monte Carlo

algorithms that transform the forecast ensemble {Xt|t−1
(i) }i=1

nens into the
desired nowcast ensemble {Xt|t

(i)}i=1
nens . Both procedures are outlined

below.
In our case, the observations yt can be related to the system state

through a linear equation of the form

yt = HtXt + vt ; ð12Þ

where Ht is a matrix that maps between the observations and the
model state vector. The additive noise vt is assumed to follow a normal
distribution with zero-mean and covariance matrix R, or vt~N(0,R).
The construction of Ht is straightforward. Most observations are direct
measurements of the biological variables; hence, Ht maps those vari-
ables onto the corresponding spatial grid of the observations, except
for the model variables phytoplankton and detritus, the sum of which
corresponds to the observed quantity PON. Thus, Ht maps the vector
entries of both phytoplankton and detritus onto the corresponding
PON index in the observation vector.

3.1. The ensemble Kalman filter

The EnKF is based on the Kalman filter update equations. The
update step of the EnKF that generates the nowcast ensemble is

X̃
ðiÞ
t j t =X̃

ðiÞ
t j t−1 + Kt Y ðiÞ

t −HtX̃
ðiÞ
t j t−1

� �
for i = 1;2;…;nens ð13Þ

Table 2
Biological model parameter set before and after parameter optimization.

Name Value Unit Description

Before After

mPhy 0.05 0.05 d−1 Phytoplankton mortality rate
μ0 1.0 0.5 d−1 Maximum phytoplankton growth rate for T=0 °C
rDet 0.02 0.0414 d−1 Detritus remineralization rate
kDIN 0.5 0.7 mmol Nm−3 Half-saturation concentration of DIN uptake

α 0.075 0.25
mmolN

mgchlorophylldWm−2 Initial slope of the photosynthesis–irradiance curve

θmax 3.84 6.0
mg chlorophyll

mmol N
Maximum ratio of chlorophyll to phytoplankton concentration

wPhy −0.08 −0.1 m d−1 Sinking rate of phytoplankton
wDet −0.8 −0.2029 m d−1 Sinking rate of detritus

147J.P. Mattern et al. / Journal of Marine Systems 79 (2010) 144–156



Author's personal copy

and is applied to each ensemble member separately. Essentially, the so-
called gain matrix Kt incorporates an increment based on a data-model
discrepancy to update the forecast state. The resultant set {X̃ t|t

(i)} i=1
nens forms

the new nowcast ensemble. The tilde notation is used here to emphasize
that in general these are samples from an approximation of the target
distribution, not the exact target distribution p(xt|y1:t). The EnKF requires

an ensemble of observations generated as Yt
(i)=Yt+vt

(i), i=1,…,nens,
with vt

(i) being an independent draw from N(0,R). The Kalman gain
matrix is computed as

Kt = PH ′
tðHtPH′

t + RÞ−1
; ð14Þ

Fig. 3. Model-simulated development of PON, DIN, chlorophyll and oxygen (left panels) and a comparison between their time-integrated depth distributions with observations
(right panels) from January 1, 1990, to January 1, 1992. Median (solid lines), area between 0.1 and 0.9 quantile (light shaded area) and between 0.25 and 0.75 quantile (dark shaded
area) are shown for model (blue) and observations (red).
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where P is the sample covariance matrix generated from the forecast
ensemble {X̃ t|t−1

(i) } i=1
nens . For more details on the EnKF, see Evensen (2003,

2006).

3.2. Sequential importance resampling

During the SIR update step at time t a weight (or probability),
designatedŵt

(i), is assigned to each forecast ensemblemember, Xt|t−1
(i) ,

according to its likelihood, thereby reflecting the fidelity of Xt|t−1
(i) to

the observations yt. The forecast ensemble, {Xt|t− 1
(i) }, is then

resampled, with replacement, where members are drawn with a
probability proportional to their weight (in other words, a weighted
bootstrap). This produces the new nowcast ensemble {Xt|t

(i)}. Thus, the
SIR algorithm works by preferentially selecting the forecast ensemble
members with high weights, which are, in practice, those profiles
closest to the available observations. In contrast, ensemble members
far from observed values (and hence with low weights) are more
likely to drop out of the ensemble during resampling. An overview of
SIR (also referred to as particle filtering) is given by Ristic et al. (2004).

The weight ŵt
(i) for the forecast ensemble member Xt|t−1

(i) is
determined according to the likelihood

ŵðiÞ
t = pðyt jXðiÞ

t j t−1Þ for i = 1;2;…;nens ð15Þ

which is the probability that the observation derives from forecast
ensemble member i. The weights are then normalized such that their
sum is 1 and they reflect the resampling probability. Finally, the
nowcast ensemble is generated by sampling from the forecast
ensemble according to the calculated probabilities. Resampling
proceeds by creating an empirical cumulative distribution function
from the normalized weights which provides a basis for weighted
bootstrapping with replacement (see Arulampalam et al., 2002).

A likelihood function must also be specified. Both the parametric
form of this distribution, as well as the numerical values for its
parameters are important. Here, we use a likelihood based on a
multivariate normal distribution

pðyt jXðiÞ
t j t−1Þ∝exp −1

2
ðyt−HtX

ðiÞ
t j t−1Þ′Σ−1ðyt−HtX

ðiÞ
t j t−1Þ

� �
; ð16Þ

where Σ is the covariance matrix of the errors between observations
and forecast values. For simplicity, Σ was considered here a diagonal
matrix with elements corresponding to the sample variances obtained
for each of the measured variables. In practice, we found that the
results were sensitive to the specification of these observation error
variances since they controlled the spread (or range of the values) of
the weights that govern the resampling step. With too much spread,
sample degeneracy and ensemble collapse can occur (i.e. only a small
number of the resampled ensemble members are distinct from one
another, many are repeated); with too little spread the forecast
ensemble is not altered by the assimilation or update step. In lower
dimensional problems, parameters of the likelihood function (such as
the observation error variance) can be estimated using modified SIR
procedures (Kitagawa, 1998).

Here we generate ensembles mainly by perturbing the biological
parameters. The resultant set of vertical profiles on all variables is

resampled, so that each ensemble member satisfies the dynamical
equations (conditional on the parameter set). We refer to this as our
All Variables SIR method. A potential drawback to the enforcement of
dynamical balance is that resampling selects the profiles of all
variables based on a global likelihood Eq. (16). This means that a
bad fit in 1 variable (e.g. Chl) can be compensated for by a good fit in
another variable (e.g. PON). In order to assess the effect of this
constraint, we also use a modified implementation of SIR that
considers each variable separately. This means that profiles of each
variable are selected independently based only on its observations.
The resulting resampled profiles are then rejoined to form the
nowcast ensemble. (In terms of Eq. (16), this means that the
likelihood would be evaluated at time t for a subset of measurements
on one variable type and Ht altered accordingly; the profiles
associated with that variable would then be sampled according to
this simplified likelihood.) We refer to this as Separate Variables SIR.
The motivation for this was to bridge the All Variables SIR, which is
dynamically consistent, with the EnKF, which does not satisfy
dynamical balance, but allows for improved fitting to observations
through an incremental update to the model state.

4. Results

4.1. Nowcast results

Simulation results after application of sequential assimilation are
shown for the EnKF (Fig. 4) and the SIR (Fig. 5). In both cases, the
evolution of the prognostic variables over time is consistent with the
corresponding results for the deterministic model (Fig. 3). However,
the perturbations resulting from the assimilative updating of the
ensemble are clearly evident in the mean and standard deviation for
both data assimilation procedures. The perturbations result from the
discrepancy between forecast ensemble and observations at each
assimilation step, during which the mean and the variance are shifted.
This is a characteristic feature of all sequential online estimation
procedures. For the SIR, the ensemble members in the nowcast
ensemble are a subset chosen from the forecast ensemble; hence, the
ensemble does not move out of the boundaries set by the ensemble
forecast. The EnKF update, on the other hand, allows for larger shifts in
the ensemble distribution. For these reasons, the SIR update in Fig. 5
appears less severe, in particular for PON and Chl, and produces a
smoother predicted state than the EnKF (Fig. 4). The standard
deviation is more strongly reduced during each update of our EnKF
implementation than during the SIR update. For the SIR, increases in
standard deviation at update are possible, as is the case for PON in the
later half of 1991 (Fig. 5). This result occurs in combination with a
decrease in standard deviation for other variables or other regions in
the model.

The time-series plots of the variables at the surface (depth-
averaged upper 80 m) in Figs. 6 and 7 illustrate the temporal changes
in the ensemble distributions. The mean and variance shifts are
evident at the assimilation times. Also, the stronger effect of the EnKF
update in comparison to the SIR update is readily observable. The
difference is especially obvious for PON in the assimilation step in
April 1991; the mean observation for PON is much higher than the
ensemble mean, causing a strong shift during the assimilation step.

Table 3
Log-normal distributions of biological parameters that vary during stochastic simulations.

Name Distribution Expected value Name Distribution Expected value

mPhy Log-N(−3.4957, 1.0) 0.05 α Log-N(−1.8863, 1.0) 0.25
μ0 Log-N(−1.1931, 1.0) 0.5 θmax Log-N(1.2918, 1.0) 6.0
rDet Log-N(−3.6845, 1.0) 0.0414 −wPhy Log-N(−2.8026, 1.0) 0.1
kDIN Log-N(−0.8567, 1.0) 0.7 −wDet Log-N(−2.0995, 1.0) 0.2029

To ensure that the sinking rates wPhy and wDet are negative,−wPhy and −wDet follow a log-normal distribution.
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While the EnKF update elevates the ensemble mean to a level beyond
the previous ensemble maximum and very close to the observations,
this is not possible in our SIR procedure, which leaves the ensemble
closer to themodel state prior to the update. The strength of this effect
during the EnKF update depends primarily on the uncertainty in

observations relative to that of the model state. Consequently, our
specification of the observation errors is important. If a low
uncertainty (a noise distribution with a low variance) is assigned to
the observations, the EnKF update will have a relatively strong effect
and move the model state closer to the data. For a high uncertainty,

Fig. 4. Time-depth plots of the ensemble mean (left panels) and its standard deviation (right panels) for a 40 member ensemble run and EnKF data assimilation. Red vertical lines
mark the assimilation steps.
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the updated ensemble will stay closer to its initial state prior to
assimilation. It is therefore meaningless to compare model and
observations directly after the assimilation is performed, as the EnKF
can be adapted to fit the data almost perfectly. A more instructive
approach is to compare the results of EnKF and SIR by assessing their
predictive skill. This is done below.

4.2. Forecast skill

Our data assimilation results in Figs. 6 and 7 suggest that
alterations of the model state (or its ensemble representation) due
to assimilating observations at a monthly time step may not improve
the forecast one month into the future. Comparing the deterministic

Fig. 5. As in Fig. 4 but for SIR.
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simulation (green dashed line) and the ensemble median (red solid
line), it appears that between the monthly BATS sampling dates the
model reverts back to a state close to that achieved without data
assimilation. This was also demonstrated with cross-validation
experiments (Mattern, 2008, results not shown). In order to assess
the predictive skill of our assimilation schemes at a shorter time scale,
we make use of the BATS bloom cruise data. The bloom cruises were

intensive sampling periods in which observations were collected
between the dates of the monthly regular core cruises. For the
purposes of assessing forecast skill, we use the bloom cruise data
purely as validation data and not as part of the data assimilation
procedure. Specifically, we compute the root mean square error
(RMSE) between the validation data and the predicted model output
for those times (corresponding to a roughly 2 week forecast). These

Fig. 6. Ensemble distribution of the mean concentration of PON, DIN, chlorophyll and oxygen in the top 80 mwith EnKF data assimilation. The solid red line is the ensemble median,
the dark gray area shows the regions between 0.25 and 0.75 quantile, and the light gray area marks the region between the ensemble minimum and maximum. EnKF assimilation
steps are marked by black vertical lines. Blue dots and error bars show the mean observations and their standard deviation in the top 80 m. Deterministic model run is shown as a
green dotted line.
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RMSEs are computed for the deterministic model run, as well as for
our EnKF implementation and the 2 SIR implementations introduced
in Section 3.2. This is done for each data assimilation technique and for
different ensemble sizes, namely nens=5, 10, 20, 40, 80, and for each
of the prognostic variables. The results are shown in Table 4. In each
case, 20 replicate runs were carried out so that the standard deviation
of the RMSE results could be computed and the Monte Carlo variation
assessed.

The results in Table 4 demonstrate that a significant improvement
in the predictive ability of the biological model can be achieved with

both the EnKF and SIR procedures. The improvement is most evident
for Chl (using the EnKF and the Separate Variables SIR implementa-
tion), as well as for PON (using the EnKF). The stronger updating of
the ensemble mean towards the observations by the EnKF data
assimilation appears to lead to a more positive impact on the
predictive skill; the EnKF results for ensemble sizes greater than 10
are better than the equivalent SIR results, especially for PON. It is
notable that the model results for oxygen cannot be significantly
improved by any of the data assimilation techniques. This is consistent
with the result of our stochastic simulations, where the variation of

Fig. 7. As in Fig. 6 but for SIR.
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the chosen biological parameters did not create a large ensemble
spread for oxygen (see Supplementary Online Material). The
comparison between the 2 different SIR implementations reveals
that the standard All Variables SIR implementation produces results as
good as those produced by the Separate Variables SIR, except for Chl
where the latter technique performs better.

Ensemble size is a key practical consideration in sequential data
assimilation, trading off accuracy against computational cost. Table 4
also considers the predictive skill using various ensemble sizes,
including an assessment of the Monte Carlo variability of the results
through replicate runs. For very small ensembles, with 5 or 10
ensemble members, the predictive skill is poorer and the replication
error (standard deviation) larger, especially for the EnKF. Increasing
the ensemble size decreases the prediction error and its standard
deviation. However, it is seen that for ensemble sizes of 20 and
greater, a doubling of the ensemble size does not change the
predictive skill significantly but doubles the computational cost
(which scales linearly with ensemble size). However, the increase in
ensemble size shows a positive effect on the standard deviation; for
most variables it decreases at a rate roughly equal to the inverse
square root of the ensemble size.

Another important feature in the assimilation of multivariate time-
series data is illustrated in our application. Consider that the
performance of our standard (All Variables) SIR implementation for
Chl in Table 4 is poor compared to the other 2 implementations.
This indicates that the chlorophyll profiles are resampled disadvan-
tageously during the SIR's update step. In the SIR update procedure,
ensemblemembers can have a high probability of being resampled if a
poor fit for certain variables is compensated by a good fit for other
variables. In our case, poor chlorophyll profiles are resampled in
combination with good PON profiles. This is likely indicative of
dynamical inconsistencies in the biological model formulation. In the
application of the EnKF for multivariate data assimilation the
generation of new ensembles allows the fit to improve for all
variables.

Finally, note that the results presented here are based on
parameter variation following a specific log-normal distribution
(Table 2). Experiments with other probability distributions, e.g. a
truncated Gaussian, showed that the results are quite sensitive to the
distribution chosen (Mattern, 2008). Since it is often difficult to assign
these distributions accurately, we remark briefly on the consequences
of their mis-specification. At a basic level, the SIR procedure needs a
sufficient forecast ensemble spread, and thus requires an appropriate
parameter distribution, to support this feature. This idea is illustrated
in Figs. 6 and 7, where at the observation (or assimilation) times the
forecast spread generally brackets the observation (or, in the case of
oxygen, the forecast ensemble spread and the observation error bars
overlap). If the ensemble spread is too small, the resampling step in
the SIR leads only to limited improvement and the result suffers. This
implies, however, that the model errors have been underestimated.
The EnKF, on the other hand, can transform the ensemble out of its
previous range upon update, even if model errors have been
underestimated. The EnKF, however, is more sensitive to both
observational data outliers and ensemble outliers. For the former,
the EnKF will force the ensemble to trend towards extreme
observations. In the latter case, where an improbable combination
of extreme parameters produces an ensemble outlier, e.g. unrealistic
profiles, the outcome of the EnKF update can be affected detrimen-
tally, especially for small ensemble sizes. (We encountered this during
one EnKF ensemble run where we had to remove an extremely high
chlorophyll profile from the analysis.) The SIR is a more robust
procedure in this respect, as ensemble outliers that are far from the
data are assigned a low weight during the resampling step, and hence
are unlikely to be propagated forward.

5. Discussion and conclusions

In this study we examined the application of 2 major sequential
data assimilation techniques, the EnKF and SIR to a 1D coupled
physical–biological ocean model for the long-term ocean monitoring
site off Bermuda (BATS, Steinberg et al., 2001). We choose the 1D
model as a compromise between realism in describing the biology and
physics of our test site versus the computational considerations
inherent in these ensemble-based Monte Carlo methods. To date, the
EnKF has found a wider range of applications in the context of
biological models (e.g. Allen et al., 2003; Natvik and Evensen, 2003;
Lenartz et al., 2007), whereas the SIR has been used less frequently
and in the context of simpler 0D models (Losa et al., 2003; Dowd,
2007). The novelty of this study hence lies in its use of SIR for data
assimilation in a partial differential equation based physical–biolog-
ical model, and its comparison and contrast with the EnKF, in the
context of estimation and prediction. However, the approaches
considered here should be scaleable to higher dimensional problems,
e.g. the ocean general circulationmodel used for ensemble-based data
assimilation by Brusdal et al. (2003).

In our implementation of sequential data assimilation, we have
focused on the biological components only. The physical–biological
coupling in our model is one-way: the physical model affects
biological distributions through turbulent mixing, but the biological
variables do not feed back to the model physics. With nudging of
model temperature and salinity to the time-series observations from
the BATS site, the physical model is able to adequately recreate key
physical features such as the mixed layer depth; this suggests that the
model can be useful for short-term predictions of biological properties
at the BATS site. As an extension, the distribution and time evolution
of the biological variables also contain information that could refine
the physical state, say by appending the state to include physical
variables as well as biological ones.

We proceeded with ensemble generation by considering varia-
tions in a subset of the biological parameters (chosen based on a
sensitivity analysis) as a dominant source of uncertainty or error (Lek,

Table 4
Root mean square error (RMSE) between BATS bloom observations and corresponding
model output for the deterministic model with the optimized parameter set and for 3
assimilation implementations and different ensemble sizes.

nens EnKF SIR SIR (separate) Deterministic

PON (mmol Nm−3)
5 0.187±0.019 0.200±0.012 0.210±0.017 0.198
10 0.176±0.008 0.197±0.012 0.200±0.011
20 0.173±0.006 0.191±0.006 0.190±0.010
40 0.172±0.005 0.190±0.007 0.190±0.008
80 0.172±0.003 0.192±0.008 0.184±0.008

DIN (mmol Nm−3)
5 0.735±0.024 0.761±0.014 0.752±0.021 0.757
10 0.732±0.023 0.754±0.011 0.748±0.016
20 0.730±0.019 0.756±0.006 0.752±0.015
40 0.740±0.018 0.752±0.006 0.754±0.015
80 0.742±0.012 0.753±0.005 0.751±0.012

Chlorophyll (mg chlorophyll a m−3)
5 0.092±0.007 0.113±0.011 0.110±0.011 0.104
10 0.096±0.007 0.112±0.009 0.103±0.010
20 0.094±0.005 0.110±0.007 0.096±0.006
40 0.093±0.003 0.110±0.006 0.096±0.004
80 0.093±0.002 0.111±0.004 0.094±0.004

Oxygen (mmol O m−3)
5 9.343±0.261 9.359±0.098 9.493±0.244 9.350
10 9.294±0.229 9.328±0.103 9.451±0.129
20 9.277±0.165 9.296±0.078 9.516±0.150
40 9.342±0.135 9.255±0.075 9.561±0.157
80 9.339±0.105 9.254±0.081 9.549±0.168

Each cell contains the mean and standard deviation of 20 ensemble runs. nens is the
ensemble size.
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2007). After assigning probability distributions (log-normals) to these
parameters, we sampled randomly from these in order to generate
ensemble members. See Turner et al. (2008) for a general discussion
on ensemble generation and error incorporation. Joint state and
parameter estimation is also possible for stochastic dynamics. For SIR,
state augmentation approaches for this have been developed
(Kitagawa, 1998; Ionides et al., 2006); for the EnKF, similar methods
are also possible (Annan et al., 2005; Moradkhani et al., 2005).

After ensemble generation, the EnKF and SIR provide an update
step to assimilate available observations. While both procedures can
be readily applied to a biological model, they operate quite differently.
The EnKF incrementally updates the model state through the matrix-
based Kalman filter updating equations (Evensen, 2006), while SIR is a
weighted bootstrap procedure based on a likelihood function (Ristic
et al., 2004). Note that these nonlinear filtering problems are distinct
from fully Bayesian approaches which assign priors to parameters and
rely on computationally intensiveMarkov ChainMonte Carlo (MCMC)
algorithms (e.g. Dowd and Meyer, 2003).

In both techniques, one must carefully consider implementation
details, such as the scaling (or sample variances) assigned to the
observations and model outputs, otherwise a single variable type or
observation can dominate the analysis. For the EnKF, the error
covariance matrix of the forecast ensemble was formed and the
matrix-based updating equation applied. For SIR, the likelihood
function was defined on the basis of a multivariate normal
distribution and resampling was done on the ensemble of profiles;
it is possible that more suitable distributions could be identified that
take better account of the discrepancy between observed and
modelled profiles. In fact, a key feature of a successful SIR with
small ensemble sizes is that the forecast distribution must overlap
with the likelihood; this depends on both the parameter variation in
the stochastic simulation, as well as the assigned observation error
variance.

Our experiments used real time-series data from BATS. This is
challenging since outliers are inevitably present, as are biases due to
the model's inability to explain all features present in the observa-
tions. Both procedures appear robust. We also considered different
implementations of SIR. In our All Variables SIR implementation,
ensemble members are resampled to preserve the relations between
the biological variables. In our Separate Variables SIR, we resampled
each of the biological variables individually and independently at the
cost of losing the dependencies between the variables during the
update, in order to investigate a possible improvement in fit.

Our data assimilation experiments showed differences in perfor-
mance between our implementations of the EnKF and the SIR. When
compared to SIR, the EnKF update had a more pronounced effect in
changing the ensemble from forecast to update; the mean was shifted
more and the standard deviation was greatly reduced after the
update. One reason for this is that the SIR update does not generate
new ensembles (it simply resamples with replacement from the set of
candidates provided by the forecast), whereas the EnKF generates a
new set of ensemble members.

We investigated the effect of ensemble size, as it is a key
determinant for performance. Generally we anticipate that larger
ensembles give better answers (i.e. more samples better characterize
the target distributions, or its moments), but they come at a higher
computational cost. Our ensemble sizes ranged from 5 to 80. As a
lower bound, we found that ensembles of 10 or fewer members are
too small for reliable results. On the other hand, increasing the
ensemble size above 20 resulted in only a slight decrease in error
between the model output and the observations, suggesting that 20 is
the optimal ensemble size for our application. We anticipate that the
optimal ensemble size is specific to each application and may be
higher for 3-dimensional models. Previously published studies that
have applied the EnKF to coupled physical–biological models have
used ensemble sizes of 100 to 200 (Allen et al., 2003; Evensen, 2003);

ensemble forecasts in numerical weather prediction typically use
fewer than 100 ensemble members (Gneiting and Raftery, 2005).

Our experiments indicate that the predictive skill improved for a
2-week forecast for both the EnKF and SIR in comparison to the
deterministic model run. We assessed the forecast ability by
comparing model output to observations obtained during intensive
sampling periods when approximately bi-weekly data was available.
The results suggest that the strong update of the model state closer
towards observations in our EnKF implementation has a positive
effect on the predictive skill. We also found that the forecast skill of
our standard SIR procedure can be improved by resampling each
variable separately. The improvement in forecast skill is variable-
dependent. Forecasts of PON and chlorophyll profit most from the
data assimilation, while no measurable improvement for oxygen was
found.

The forecast skill of our application could likely be improved by
reducing dynamical inconsistencies between our model and the BATS
system. The 1D model is not able to capture some of the complex
physical dynamics present at the BATS site, such as the influence of
mesoscale eddies (McGillicuddy et al., 1998), and the biological
dynamics have been highly simplified. Another important factor is the
uncertainty assigned to the BATS observations, which is not accurately
known. We approximated this uncertainty based on the variability in
the observations. Both procedures are affected by this observation
uncertainty — the EnKF through the observation error covariance
matrix and the SIR through the likelihood specification. These control
how closely the ensemble can move toward the observations at the
update step.

In summary, the SIR and the EnKF improved model results and
forecast abilities for the coupled physical–biological system we
examined. Several choices had to be made during the application of
both assimilation techniques to a specific system, e.g. the observation
error covariance matrix and the likelihood function, which affect
assimilation performance. In order to utilize the full improvement in
the predictive skill that sequential data assimilation can offer, the
model under consideration should be both well-calibrated (e.g.
through parameter optimization) and also consistent with the system
of interest. For the BATS site, future work would therefore begin by
refining the physical and biological structure of the model. Our results
however demonstrate that ensemble-based data assimilation is a
promising direction for improving prediction in coupled physical–
biological systems.
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