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1. Introduction

ABSTRACT

We use a statistical emulator technique, the polynomial chaos expansion, to estimate time-dependent values
for two parameters of a 3-dimensional biological ocean model. We obtain values for the phytoplankton
carbon-to-chlorophyll ratio and the zooplankton grazing rate by minimizing the misfit between simulated
and satellite-based surface chlorophyll. The misfit is measured by a spatially averaged, time-dependent dis-
tance function. A cross-validation experiment demonstrates that the influence of outlying satellite data can
be diminished by smoothing the distance function in time. The optimal values of the two parameters based
on the smoothed distance function exhibit a strong time-dependence with distinct seasonal differences,
without overfitting observations. Using these time-dependent parameters, we derive (hindcast) state esti-
mates in two distinct ways: (1) by using the emulator-based interpolation and (2) by performing model
runs with time-dependent parameters. Both approaches yield chlorophyll state estimates that agree better
with the observations than model estimates with globally optimal, constant parameters. Moreover, the em-
ulator approach provides us with estimates of parameter-induced model state uncertainty, which help deter-
mine at what time improvement in the model simulation is possible. The time-dependence of the analyzed
parameters can be motivated biologically by naturally occurring seasonal changes in the composition of
the plankton community. Our results suggest that the parameter values of typical biological ocean models
should be treated as time-dependent and will result in a better representation of plankton dynamics in
these models. We further demonstrate that emulator techniques are valuable tools for data assimilation
and for analyzing and improving biological ocean models.

© 2012 Elsevier B.V. All rights reserved.

we find evidence for temporal and spatial dependence of the param-
eters of a biological model that contains just two plankton variables,

Simple models are often considered advantageous over more
complex ones, because they tend to be easier to interpret and to cal-
ibrate and less expensive computationally. Their low complexity is
typically achieved by combining many properties of the simulated
system into single model variables and averaging them in time and
space. In the context of biological ocean models, a good example for
this is the blending of many plankton species into functional groups
or often even into bulk model variables for phytoplankton and zoo-
plankton (so called NPZD-class models). In the bulk variable treat-
ment, each variable represents a large variety of real species with a
range of specific physiological characteristics (e.g. different growth
and nutrient uptake rates, different carbon-to-chlorophyll ratios).
Since the abundance of these species and their relative contribution
to the plankton community changes in space and time, so should
the physiological characteristics of the bulk variables. In this study,
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suggesting that using static parameters is overly simplified and
suboptimal. Using an emulator approach in combination with a tem-
porally and spatially dense set of satellite observations we can effec-
tively infer parameter values that evolve in time and space and lead
to an improved representation of plankton in the model.

Many studies have employed data assimilation in the context of
biological models, often in order to optimize the poorly known pa-
rameters but also to update the model state and improve the models'
forecast abilities. The techniques used in these studies can be divided
into 3 broad categories: (1) variational techniques, such as 3DVAR
and 4DVAR (e.g. Lawson et al., 1996; Powell et al., 2008; Smedstad
and O'Brien, 1991), (2) Monte-Carlo based techniques which include
the ensemble Kalman filter (e.g. Allen et al., 2003; Evensen, 2003; Hu
et al., 2012), particle filter methods (Dowd, 2011; Losa et al., 2003;
Mattern et al., 2010a) and Markov chain Monte Carlo methods (e.g.
Dowd, 2007; Jones et al., 2010), and (3) emulator techniques. Emula-
tors differ from the aforementioned techniques in that they effective-
ly replace computationally expensive model simulations with fast
approximations. Emulators require a set of model simulations for
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specific values of the stochastic inputs (parameters), then approxi-
mate unknown model output based on these simulations. The ap-
proximation is used in place of the true model output, eliminating
the need for additional model simulations. This property makes emu-
lators more efficient than other approaches, especially Monte Carlo
techniques which rely on ensemble generation through random sam-
pling and therefore generally require considerably more model simu-
lations (Rougier and Sexton, 2007).

The emulator approach that we use in this study is the polynomial
chaos expansion, which was first introduced by Wiener (1938)
and later extended (Askey and Wilson, 1985; Wan and Karniadakis,
2006). Polynomial chaos relies on a set of orthogonal polynomial basis
functions for the approximation of model results. The method has
been applied widely in physical sciences (see Xiu and Karniadakis,
2003, for an overview), with only few applications in an oceano-
graphic context (Lucas and Prinn, 2005; Thacker et al., 2012). Emula-
tors applied in oceanographic contexts include emulators based on
Gaussian process models (Scott et al., 2011) and other techniques
(Frolov et al., OCT, 2009; Hooten et al., 2011). To our knowledge,
emulator approaches have been used in the context of biological
ocean models in only one study by Hooten et al. (2011) where 7 bio-
logical parameters are estimated. We focus this study on just 2 bio-
logical parameters, but employ the emulator to estimate their time-
dependence in order to achieve a better representation of plankton
dynamics in the model and an enhanced understanding of the biolog-
ical model dynamics. We further use the emulator to obtain improved
state estimates in an efficient manner.

Previously, two approaches have emerged to better represent the
diversity of plankton. The first approach is to divide planktonic spe-
cies into functional groups so that each plankton variable represents
a more homogeneous and functionally distinct group of fewer spe-
cies. While the simpler NPZD-class models contain only one phyto-
plankton and one zooplankton variable (e.g. Doney et al, 1996;
Fennel et al., 2008; Franks and Chen, 1996), many biological models
include two or more phytoplankton variables distinguishing, for ex-
ample, between small and large phytoplankton, diatoms, diazotrophs
etc. (e.g. Aumont et al., 2003; Gregg et al., 2003; Lehmann et al., 2009;
Moore et al., 2001). One obvious limitation to adding more and more
functional groups is that the number of poorly known parameters
necessary for describing the biological interactions between function-
al plankton groups and different pools of other organic and inorganic
matter increases dramatically (Denman, 2003) with consequent deg-
radation of predictive skill.

In a recent, alternative approach, Follows et al. (2007) initialized a
model with roughly 100 phytoplankton groups with their functional
parameters drawn randomly from prescribed probability distribu-
tions. This approach allows for spatial and temporal variations in
the self-organizing plankton community structure that emerges
from local environmental conditions and competition (Goebel et al.
(2010), see also review by Follows and Dutkiewicz (2011)) and rep-
resents a significant step toward a more flexible and realistic repre-
sentation of plankton diversity in biological models. One drawback
may be the large computational overhead required to carry on the
order of 100 state variables.

We propose an alternative approach for the simulation of func-
tional groups in biological models, namely incorporating variability
or uncertainty by allowing the plankton parameters to be random
variables. The main idea is that a small number of variables can
achieve a more flexible representation of the plankton community,
if their parameters are not fixed but stochastic properties governed
by probability distributions. This approach effectively allows one phy-
toplankton variable to take on a range of different growth rates,
sinking rates, etc. mimicking the behavior of different functional
groups at different times. In combination with observations and a
data-assimilative framework, the uncertainty in the model can be
constrained by limiting the stochastic parameters to ranges that

explain the observations best. We accomplish this using the emulator
approach described above.

Most studies which combine biological modeling with the estima-
tion of stochastic parameters treat influences such as the varying
plankton assemblage as error terms (Dowd, 2011). In these cases
one aims to find a static distribution for the stochastic parameter of
interest. Stochastic parameters then induce uncertainty into the
model state; the mean (or median) model state represents the best
estimate of the true state, while its variance (or error estimate)
captures the model uncertainty including the variations caused by
changing plankton assemblages. Here, our approach is different:
using a time-series of observations, we find the parameter values
that best explain each observation. That is, parameter values are
allowed to change in time and our best state estimate is the model
state associated with the series of time-varying parameters.

For this purpose, we use a set of daily chlorophyll satellite images
to obtain daily values for 2 parameters of the biological model. We
find that there is a strong time-dependence in the optimal parameter
values which follow a seasonal cycle. Chlorophyll state estimates de-
rived from the time-varying parameters are significantly closer to ob-
served chlorophyll values than those of a model simulation with
optimized fixed parameters. The improvement remains significant
in a cross-validation experiment which we performed to avoid over-
fitting the observations. This is evidence that the introduction of
time-varying parameters can achieve a more realistic representation
of the biological dynamics in a typical biological ocean model.

2. Methods
2.1. Biological model and parameters of interest

Our model domain is the Middle Atlantic Bight (MAB), a coastal
region in the northwest Atlantic that stretches from Cape Cod in the
north to Cape Hatteras in the south (Fig. 1). The model is based on
the Regional Ocean Modeling System (ROMS; http://myroms.org,
Haidvogel et al. (2008)) and consists of a physical model coupled
with a biological component. Open boundary conditions for tempera-
ture, salinity, sub-tidal frequency velocity and sea level are taken
from the larger-scale MAB and Gulf of Maine (MABGOM) regional
model described in Chen and He (2010). Further details of the phys-
ical model are described in Hu et al. (2012). The biological component
is described in Fennel et al. (2006); it simulates a simplified nitrogen
cycle and has been employed successfully in various modeling studies
(Bianucci et al., 2011; Fennel and Wilkin, 2009; Fennel et al., 2008;
Previdi et al., 2009). The model contains one state variable each for
phytoplankton and zooplankton, as well as variables for chlorophyll,
nitrate, ammonium and small and large detrital nitrogen. Chlorophyll
is simulated separately from phytoplankton to account for the effects
of photoacclimation which allows phytoplankton species to regulate
their chlorophyll content based on the availability of light and nutri-
ents (Geider et al., 1998). Here, all model runs are for 1 year, starting
on 1 January 2006 and ending on 31 December 2007. The initial and
boundary conditions for the biological variables are taken from a larg-
er scale model of the Northeast North American (NENA) shelf that
uses the same biological component (Fennel et al., 2006) as described
in Hu et al. (2012).

Despite the relative simplicity of the biological model with only
two plankton variables, one for phytoplankton and one for zooplank-
ton, it requires more than 30 physiological parameters for the biolog-
ical dynamics. Here we focus on only two of these parameters: the
maximum ratio of chlorophyll to phytoplankton carbon, and the max-
imum grazing rate of zooplankton. These two parameters were se-
lected based on a sensitivity study where we compared the effect of
variations in several candidate parameters on the chlorophyll field.
Specifically, we performed 1-year simulations for a baseline parame-
ter set and for parameter sets where one parameter was doubled and
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Fig. 1. Snapshot of the chlorophyll variable in the biological model. The left image shows the surface concentration, on the right multiple slices of the 3-dimensional chlorophyll field

are placed into the bathymetry of the model region.

halved. The selection criterion is based on chlorophyll sensitivity be-
cause we use chlorophyll satellite observations (see Section 2.2
below).

The most sensitive parameters are the maximum ratio of chloro-
phyll to phytoplankton carbon and a parameter controlling the graz-
ing rate of zooplankton. From here onward, we will refer to the
maximum ratio of chlorophyll to phytoplankton carbon as 6; and
the maximum grazing rate of zooplankton as 6,. The physiological pa-
rameter 6, sets an upper limit on the concentration of chlorophyll rel-
ative to phytoplankton biomass. In the model equations (Fennel et al.,
2006), the fraction of phytoplankton growth that is devoted to chlo-
rophyll synthesis, pcp, is a function of 6;:

_ nuXPhy
Pcni(61) = 04 aXey’

Here, Xppy and Xcp, are the phytoplankton and chlorophyll vari-
ables respectively and %}’Lgl is the ratio of achieved-to-maximum po-
tential photosynthesis (Geider et al., 1997). The parameter 6,
controls the growth and abundance of zooplankton, which interacts
with and is strongly dependent on the concentration of phytoplank-

ton. It scales the zooplankton grazing rate g according to:

X2,
0)=6,—
8(62) ka+X12,hy'

where kp is the half-saturation concentration of phytoplankton inges-
tion. The model equation that contains the sources and sinks of chlo-
rophyll incorporates both pcp(62) and g(6-), in its full form it is:

X X
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———————

growth mortality

grazing aggregation

Here X0, and Xsper are the zooplankton and the small detritus
variables respectively; the constants mp and 7 are mortality and
aggregation parameters. Since both 6; and 6, directly scale major

growth and loss terms, it is not surprising that variations in either pa-
rameter have a strong effect on the chlorophyll concentration.

2.2. Chlorophyll observations and model-data comparison

Observations are essential in model calibration, optimization and
validation. In all cases model output is compared to observations or
made to fit the observations according to a chosen criterion. Thus
both the observations and the choice of criterion can affect the re-
sults. Mattern et al. (2010b) formulated and analyzed several criteria
tailored to model-data comparisons of satellite observations, and sug-
gested a new measure, the “adapted gray block distance” (AGB) as
preferable over more commonly used measures such as the root
mean square error. For the calculation of AGB, two images are com-
pared at different resolution levels by dividing them into subsequent-
ly smaller, square blocks and determining the average intensity value
for each block. For each resolution level, from the coarsest resolution
where one block encompasses the entire image, up to the finest
where each block is made up of a single pixel, the root mean square
error is determined, weighted and summed, resulting in the AGB dis-
tance value. When comparing an image derived from the model to an
observation image, the comparison at multiple resolutions can be ad-
vantageous when noise is present in the observations and there are
spatial offsets in the images (Mattern et al., 2010b). The AGB is also
adapted to deal with missing values in images. Because of these qual-
ities, we make use of AGB for the remainder of this study. Note how-
ever, that the methods described in this study do not require the use
of AGB, and that any suitable model-data distance measure can be
substituted.

The observations used in this study are daily images of surface
chlorophyll concentrations derived from the SeaWiFS satellite for
the year 2006 (350 images are available). Each image represents a
daily average of one or more satellite scenes that have been interpo-
lated onto the model grid. Due to clouds and other effects that impair
the view of the optical satellite sensors, large portions of the images
may be missing (compare, e.g., the sample satellite images in Fig. 2).
In addition, noise is present in our satellite data set and especially ev-
ident in coastal regions (see, e.g. the average chlorophyll develop-
ment of the data in the estuaries in Fig. 7). The same observational
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Fig. 2. The time-dependent distance function for the optimal fixed parameter set and two smoothed versions of it. The two smoothed curves correspond to smoothing intensities of
5 and 10 (dark red and green, respectively); the Gaussian windows with which the smoothing was performed are shown on the right. Two data images illustrate one point of the
distance function with a high value and many missing values as well as one with a low distance function value and few missing values. High distance values tend to be caused by

little available data.

data set used here was also used in Hu et al. (2012) and is described
in more detail there.

We denote the distance value of AGB when comparing the satellite
image at time index t with the corresponding model chlorophyll field
as

d(t,6,,6,) for t=1,2,...,ngp,. (1)

Here, ngps is number of (not necessarily equally spaced) time steps
with available observations (in our case nps—3s50). The dependence
of d on the parameters 6; and 6, stems from the influence of both pa-
rameters on model chlorophyll

2.3. The emulator: the polynomial chaos expansion

Polynomial chaos is an approach to quantifying how uncertainty
in model inputs relates to uncertainty in its outputs. Like other emu-
lator approaches it uses deterministic model runs given specific
values of the uncertain inputs (i.e. the model's parameters, initial or
boundary conditions, all of which will be referred to as parameters
in the following). The resulting model output for these specific pa-
rameter values is then interpolated in parameter space to obtain ap-
proximations of the model output for all parameter values within
the considered range. Since each uncertain input has a probability
distribution (a prior distribution which must be specified) every
model output that is dependent on the uncertain inputs must also
have a distribution (induced by the uncertainty in the input). The
polynomial chaos expansion provides a framework with which the
properties of the distribution of any output value, such as the mean
and variance of the distribution, can be approximated easily.

As the name suggests, polynomial chaos performs a polynomial
interpolation in parameter space. This feature becomes useful in
cases where one wants to obtain an estimate of the model output
for a parameter value without performing additional model simula-
tions. Using polynomial chaos, one can estimate any model output
for the parameter values of choice. These outputs could range from
the phytoplankton concentration in a given grid cell to the entire 3-
dimensional chlorophyll field of the model. The interpolation feature
of the polynomial chaos expansion can also be used to approximate
other functions which depend on the uncertain inputs, e.g. we use it
here to approximate the distance function in Eq. (1).

A short introduction to the polynomial chaos theory follows (for
recent, more detailed studies see Xiu and Karniadakis (2003) and
Marzouk and Najm (2009)). Since our focus is on stochastic parame-
ters we do not discuss other uncertain inputs such as initial or bound-
ary conditions. While we include 2 stochastic parameters, the
methodology is described here for only one stochastic parameter 6.
By assuming independent stochastic parameters, the theory trans-
lates in a straightforward manner into multidimensional parameter
space (Xiu and Karniadakis, 2002).

Here, we let the function f(X,t,60) be our property of interest, f can
represent any model output or a function thereof (e.g. our distance
measure in (1) which is a function of the model's chlorophyll output).
The function f may be dependent on space x, time t and the
uncertain parameter 6. In the polynomial chaos expansion fis approx-
imated by a basis function expansion:

Kmnay

f(x,t,0) = Z (X, )i (0) + €qrunc(6) (2)
k=0

where ai(x, t) are expansion coefficients, independent of the uncer-
tain input 0, and the kth basis function ¢,(6) is a polynomial of
order k in the parameter space defined by 6. The parameter k. is
the maximum order of polynomials used in the approximation and
determines the quality of the approximation and eync is the trunca-
tion error. Without cutoff, i.e. for ky.x=, the approximation is
exact and equnc(0) =0. However, the number of required model
runs grows with kn.x, so that computational constraints force us to
use relatively small values in typical applications.

The choice of polynomials in Eq. (2) is dependent on the probabil-
ity density function of the parameter 6§ which we denote p(6). The
polynomials are chosen to be orthogonal with respect to p, so that

Jsbic(6)i(0)p(6)d6 = &N (3)

Here S is the support of p (the region where p(6)>0); the
Kronecker delta function &y ; is equal to 1 if k=i and O otherwise;
Ny = _[5¢>k(9)2p(0)d9 is a normalization factor specific to the kth poly-
nomial and independent of 6. All common distributions have well
known sets of polynomial basis functions (Xiu and Karniadakis,
2002) and polynomial chaos can be generalized further to accommo-
date arbitrary distributions of 6 (Wan and Karniadakis, 2006). For


image of Fig.�2

36 J.P. Mattern et al. / Journal of Marine Systems 96-97 (2012) 32-47

-'lr'zzlgrlst 7 Legendre polynomials ¢y and their associated normalization factors N.
k oi(0) for 0[—1,1] N
0 1 1
1 16 1
2 1 (302 —1) 1
3 3 (56°—30) 1
4 §(350%—300° + 3) 1
5 4 (636°—7060° + 156) 4
6 35 (2316°—3156" + 10567 —5) L

example, the corresponding set of orthogonal polynomials for a 6
with uniform distribution, which we will use in this study (see
Section 2.4), are the Legendre polynomials and ¢y is the kth Legendre
polynomial. The first 7 Legendre polynomials and their associated
normalization factors are listed in Table 1.

To perform the basic polynomial chaos approximation in Eq. (2),
one needs to compute the coefficients a. They are given by

a(X,t) = Nl’ Jsf(x, £, 60)di (6)p(6)de, (4)

which is approximated by a Gaussian quadrature as (Xiu and
Karniadakis, 2002):

0o s

Here 6V is a quadrature point in parameter space and given by the
roots of ¢ 41 and the scalars wi are Gaussian quadrature weights
(both are dependent on the choice of the distribution of # and the pa-
rameter kn.x). Table 2 contains the quadrature points and their
weights for uniform 6 and Gauss-Legendre quadrature with
kmax="6. From a computational perspective, it is important to note
that the computation of the coefficients a, requires the computation
of f(x,t,6%) at each quadrature point 8 for i=0,1,...,kmax. In
other words, kmax + 1 model runs are needed. Increasing the precision
of the approximation by increasing kn.x by one, therefore comes at
the cost of an additional model run.

One advantage of polynomial chaos lies in the straightforward
way in which the uncertainty in the input (the stochastic parameter
0) translates into the output (f). Due to the orthogonality of the poly-
nomials, expected value and variance of f conditional on the distribu-
tion of 6 are straightforward to calculate once the coefficients a, have
been computed. Conditional expectation and variance are given by

a(x, )= N, i:f(

1=

E(f(x,t,0)|0) = ag(x,t) and  var(f(x,t,6)|0) = Zak (X, t)N,.  (6)

They represent the mean and variance of f introduced by the var-
iation of 0. To obtain good estimates of the full (unconditional) vari-
ance of f, e.g. for the purpose of creating estimates of model error, it
is important to capture all the error of the uncertain inputs and to
choose appropriate prior distributions for the inputs.

As mentioned, the above equations feature only one stochastic
parameter 6. When expanded to more than one parameter, the

Table 2
The quadrature points 6 and associated weights ; for Gauss Legendre quadrature of
maximum order Ky.x=6.

i 1 2 3 4 5 6 7
00 09491 —0.7415 —04058 0 0.4058  0.7415  0.9491
; 0.1295 0.2797 03818 04180 03818 02797 0.1295

computational cost for polynomial chaos increases exponentially
with the number of stochastic parameters. For example, when includ-
ing ny stochastic parameters to be approximated using polynomials of
order Kmax, (kmax +1)™ model runs are required. Furthermore, if one
desires to increase the order of polynomials, the quadrature points
change, so that completely new model runs will have to be per-
formed. However, it should be noted that the model simulations are
only performed once prior to any attempts at inference.

2.4. Polynomial chaos setup and approximation

When implementing polynomial chaos, the factors that need care-
ful considerations are (1) the choice of uncertain model inputs (pa-
rameters), (2) the prior distributions assigned to these inputs, and
(3) the highest order of polynomials k.« for each input. In an ideal
scenario, one would take a fully Bayesian approach, that is treat all in-
puts that are not completely known as uncertain and incorporate
them into the polynomial chaos procedure. However, complex
models such as 3-dimensional ocean models have a large number of
inputs that are not fully known, e.g. many parameters, physical forc-
ing, boundary conditions, etc. To incorporate all these sources of un-
certainty into the polynomial chaos expansion would necessitate a
large number of model runs and prove to be infeasible using current
computing resources.

Here, we undertake a targeted study focused on just two biolog-
ical parameters. Once the uncertain inputs are selected, assigning a
prior distribution to the inputs requires careful consideration, as
one typically has little knowledge of the uncertainty (or error) of
the inputs. Often, and the case in this study, one bases the prior dis-
tribution on previous experiments, literature values or educated
guesses. Lastly, in the choice of k,.x, one is again limited by compu-
tational resources and faced with a trade-off between precision and
number of model runs. The optimal choice is dependent on the
problem; in this study we found that the functions and fields we
chose to interpolate were well approximated by polynomials of
order 6 (see below).

For this study, the two parameters 6, and 6, (see Section 2.1) are
considered to be stochastic. As the prior distribution for 6; and 6,
we used a uniform distribution and set the lower and upper limits
of the distribution as 0.25 and 1.75 times the parameters' standard
value, respectively. The standard values are taken from Fennel et al.
(2006) and turned out to be reasonably close to the optimal (fixed)
parameter set for this study (see Fig. 3, Section 3.1.2). We chose the
uniform distribution because of its finite support which does not per-
mit negative parameter values, as well as yielding a simple polynomi-
al chaos setup.1 Finally, we selected the maximum order ky,,x =6 for
both parameters. As a result (ky.x+ 1)2=49 model runs had to be
performed. The 7 x 7 grid of quadrature points in parameter space is
shown in Fig. 3.

After performing the necessary model runs, polynomial chaos al-
lows for the approximation of any function that is dependent on
the stochastic parameters. It can therefore be used to approximate
the distance function in (1) for the purpose of model-data com-
parison. Here, d takes on the role of f in Eq. (2), i.e. we set
f(x,t,01,02) = d(t,01,0,). As described in Section 2.3, we then per-
form the following steps to approximate d. After the model is run
for the parameter values of each quadrature point, the distance

1 While model uncertainty estimates might benefit from a different parameter dis-
tribution, this study relies on the polynomial interpolation aspect of polynomial chaos
which is not very sensitive to changes in the distribution. Polynomial interpolation is
exact at the quadrature points and a change in distribution affects the layout of the
quadrature points in parameter space. Only a drastic change in the quadrature point
layout can cause a strong effect on the polynomial interpolation but such a change
would need to be caused by an equally drastic change in the parameter distribution,
e.g. a strong shift in the range of the uniform distributions.
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Fig. 3. The interpolated time-averaged distance function. Image (a) shows a contour plot of the distance function with quadrature points (black crosses) and the global minimum
(blue star) which corresponds to the optimal fixed parameter set. A slice through the interpolated function in (a) is shown in (b) as a green line in comparison to model results (red
pluses). The slice in (b) also illustrates the effect of lowering kmay, thereby using fewer basis functions to approximate the average distance function.

function is computed for each of the model runs at all time steps
from 1 to neps. The expansion coefficients a(t) specific to the dis-
tance function are then computed using Eq. (6). As the distance
function d is not dependent on x the coefficients a, do not depend
on X either. Now we can use the approximation in Eq. (2) to ap-
proximate the distance function for each value of 6; and 6, in
their respective ranges.

Approximating multi-dimensional fields such as the surface chlo-
rophyll (as done in our emulation experiment in Section 3.2.1
below) works in a similar way. The surface chlorophyll values in the
topmost model layer are extracted for all model runs at all time
steps. The extracted output, which is dependent on 64, 65, t and the
two horizontal spatial coordinates contained in X, is set equal to
f(x,t,01,0,). Surface chlorophyll specific coefficients a;(x, t) are com-
puted which are, like the surface chlorophyll field, dependent on the
spatial coordinates x. No recomputation of the polynomials ¢ () is
necessary to obtain approximate surface chlorophyll values from
Eq. (2).

3. Results

We hypothesized that temporal changes in plankton species
composition manifest as shifts in the parameter values of our biolog-
ical model. In other words, we expect that parameter values that
shift in time and space will better explain the observations. The
polynomial chaos expansion allows us to obtain approximations of
model output for any parameter value within prescribed bounds.
This property allows us to find optimal parameter values with only
a limited number of computationally costly model runs. Specifically,
we employed the polynomial chaos expansion to approximate the
distance between observed and simulated surface chlorophyll. First,
we minimized the distance for the entire data set to obtain global
optimal parameters independent of time and space (referred to as
optimal fixed parameters in the following). Then we minimized the
chlorophyll distance for single (daily) observations individually and
for different model regions to identify temporal and spatial varia-
tions in the optimal parameter values. Both optimizations are
based on the same set of 49 model runs and further require only
the computationally much less demanding evaluations of the poly-
nomial chaos-based interpolation.

3.1. Interpolating the model-data distance function and parameter
estimation

3.1.1. Smoothing the distance function

We obtained estimates of optimal parameter values by interpolat-
ing and minimizing the time-dependent distance function d in (1).
This function appears to be very noisy and varies considerably from
one day to the next (Fig. 2), not necessarily due to bad model output
on days with large values of d, but because of outliers in the observa-
tions caused by a large number of missing values (Fig. 2).

In order to diminish the influence of outliers in our analysis and to
create a more robust distance function, we used a low-pass filter in
the form of a Gaussian window to smooth d. From here on, we use
the term smoothing intensity to describe the amount of smoothing
that was applied to the distance function. The smoothing intensity
is a positive integer value which increases with the amount of
smoothing. More precisely, twice the smoothing intensity plus 1 is
the width of the Gaussian smoothing window in days (we only use
window widths that are odd), i.e. a smoothing intensity of O refers
to a window width of 2x0+1=1 and therefore no smoothing,
while a smoothing intensity of 10 refers to a window width of
2x1041=21. Examples of the smoothed distance function and the
corresponding Gaussian windows are shown in Fig. 2. For simplicity,
we do not remove any of the data outliers from our analysis, eliminat-
ing the need to create an objective criterion for their removal.

The objective of smoothing the distance function is to minimize
the impact of outliers, reduce overfitting and to improve the parame-
ter optimization.

3.1.2. Optimal fixed parameters

Typical parameter optimization studies assume fixed parameter
values, and the optimized parameters are determined by minimizing
the model-data discrepancy over the full set of available observations.
We can do the same using the polynomial chaos expansion: To obtain
estimates of the optimal fixed parameter values with respect to the
distance function d(t, 61, 6) in Eq. (1), we eliminated the time depen-
dence of d by computing its average in time. We then used the poly-
nomial chaos expansion to approximate the resulting average
distance function in parameter space as detailed in Section 2.4. The
resulting distance function is smooth and exhibits a clearly defined
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global minimum close to the center of the domain defined by the
ranges of 0; and 6, (Fig. 3). Because the average distance function
changes more along the 6;-axis than in the direction orthogonal to
it, we can deduce that model chlorophyll is more sensitive to relative
changes in the value of the maximum chlorophyll to carbon ratio (6;)
than the zooplankton grazing parameter (6,) and there appears to be
little dependency between the parameters.

In order to gauge the quality of the polynomial interpolation, we
performed a number of analysis model runs along a slice through
the parameter domain (green line in Fig. 3(a)). A comparison of the
approximated distances (light green line in Fig. 3(b)) with the exact
distances obtained for the analysis runs (red symbols in Fig. 3(b)) re-
veals that the average distance function is generally well approximat-
ed by the interpolation for k.« with only some edge effects typical of
polynomial approximations. This leads us to conclude that the posi-
tion of the global minimum of the average distance function in
Fig. 3(a) represents a good approximation of the optimal parameter
values with respect to our full data set. In the following we will
refer to the parameter pair that minimizes the interpolated average
distance function as the optimal fixed parameters.

The analysis model runs can also help us assess the convergence of
the polynomial chaos approximation. We chose k,.x =6 for the ap-
proximation in Eq. (2). The effects of truncating the sum at lower
orders (smaller values for kn.x) are shown in Fig. 3(b). The results
of the analysis model runs remain fairly well approximated for
kmax =>4, but below that, the approximation becomes considerably
worse. Interestingly, the position of the minimum changes relatively
little with the addition of higher order polynomials. For our purposes,
the position of the minimum of the average distance function is ap-
proximated well and choosing a higher k.« at the cost of additional
model runs appears unnecessary.

For a different data set or a subset of our data, the average distance
function and the position of its minimum is likely to change. It is de-
sirable to gain an understanding of the uncertainty in the position of
the global minimum given in Fig. 3. For this purpose, we performed a
bootstrapping experiment: We generated subsets of the observations
(the bootstraps) by randomly selecting a fixed number of satellite im-
ages from the 350 images that make up the complete observational
data set. For each bootstrap, we calculate the global minimum of the
respective time-averaged distance function. For the relatively large
bootstrap size of 200 images, drawn without replacement, we see a
tight clustering of minima around the full data minimum (Fig. 4(a)).
With a decrease in bootstrap size, the range becomes greater, espe-
cially along the 6, axis. At the small bootstrap size of 10, the minimum

positions are distributed all along our selected range of 6, (Fig. 4(d)).

It is apparent that the optimal fixed parameter set is very much
dependent on the subset of data used in the optimization exercise
and can vary considerably based on its choice. In the following sec-
tions, we show that this dependence is mainly due to an underlying
time-dependence of the optimal parameters and not primarily due
to the noise contained in our data set.

3.1.3. Time-varying parameters

Time-dependence of the optimal values of the physiological pa-
rameters 0, and 6, would hint that there is a signal in the observa-
tions that the model cannot account for if the parameter values are
fixed. To uncover time-dependence, we return to the polynomial
chaos approximation of the distance function. In the previous section
we used it to obtain a set of optimal fixed parameters for our entire
data set by minimizing the average distance function. Using a very
similar procedure, we can approximate the distance function for
each daily observation to obtain a set of optimal parameters for
each day. In other words, we used the polynomial chaos expansion
to interpolate d(t, 61, 6,) in parameter space for t=1,...,nyps and de-
termine the global minimum of the function for each t. We performed
this procedure for the unsmoothed version of d as well as for versions

that have been smoothed at different intensities as described in
Section 3.1.1. Then we arranged the resulting parameter values for
each smoothing intensity into a parameter path in time, as shown
in Fig. 5. The path corresponding to the unsmoothed distance func-
tion appears very jagged, dominated by high frequency variation
and with little structure; as the temporal smoothing increases the
paths become more structured and a loop emerges.

The structure of the parameter paths can be interpreted in a straight-
forward way. With no smoothing, the procedure picks the optimal pa-
rameter set to match one satellite image alone, including the noise
contained within the image. The distance to the previous or following
image is not considered. As the distance function is noisy (see Fig. 2),
we expect a high amount of noise in the daily optimal parameter values
as well. The high frequency variations in the daily optimal parameters
are therefore likely local fits to the noisy data. However, Fig. 5 also
shows clear evidence of a low frequency parameter change visible at
higher smoothing intensities. This low frequency signal reveals that
there is a time-dependence of the optimal parameter values that cannot
be explained by the noise in the observations, indicating that the fit be-
tween model and observations can be improved by allowing parame-
ters to follow the low frequency signal using cross-validation.

These results also suggest that there is an optimal smoothing in-
tensity, strong enough to filter out the effects of the noise contained
in the data, yet not too strong to also remove the low frequency signal
we are interested in. In the following section, we show how the chlo-
rophyll output of our model can be improved by using the low
frequency parameter paths. Based on a comparison with the observa-
tions we also determine the optimal smoothing parameter that best
isolates the low frequency signal.

3.2. Emulating surface chlorophyll

3.2.1. Polynomial chaos-based emulation

In the previous section, we described how time-dependent pa-
rameter paths can be obtained from the interpolation of the likewise
time-dependent distance function. Here we utilize these paths to ob-
tain improved model estimates of surface chlorophyll fields. We use
the polynomial chaos expansion as an emulator, i.e. a system that al-
lows us to obtain estimates of the state of the ocean for a parameter
combination we did not perform a model run for. In our case, we em-
ulate the full surface chlorophyll field using the polynomial chaos
based-interpolation.

As described in Section 2.4, the polynomial chaos expansion can
be used to interpolate virtually any model output in parameter
space, including the time-dependent chlorophyll concentrations in
the surface layer of the model. This feature allows us to efficiently in-
terpolate the chlorophyll values along the parameter paths. We
obtained daily pairs of parameter values from one of the time-
dependent parameter paths (see Fig. 5). Then, with the help of the
polynomial chaos expansion, we estimate the surface chlorophyll
fields that correspond to the daily parameter values. This procedure
results in an emulated time-dependent surface chlorophyll field,
which is dependent on the smoothing intensity that underlies the
chosen parameter path. Note that one can use the same procedure
to obtain estimates of depth-resolved chlorophyll fields or other bio-
logical properties along the parameter paths.

We then compared the interpolated chlorophyll fields to the ob-
servations as in previous sections, using the same distance measure
d in Eq. (1) but replacing chlorophyll model output with the interpo-
lated model chlorophyll fields. This way, we obtain a distance value
for each day which, averaged in time, results in an average distance
value. We computed average distance values for different smoothing
intensities (blue diamonds in Fig. 6).

The resulting average distance values based on the emulation ex-
periment are smallest for the parameter path without smoothing
(Fig. 3(a)), and increase with more smoothing. They are directly
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Fig. 5. The parameter paths obtained by minimizing the time-dependent distance function in each time step for 4 different smoothing intensities. The smoothing intensities (0, 5

and 10) in panels 1 to 3 correspond to those shown in Fig. 2.

comparable to the average distance value of the optimal fixed param-
eter model run from Section 3.1.2. For smoothing intensities up to 45
all average distances are well below the values of the optimal fixed
parameter run (indicated by the dashed line in Fig. 6). In other
words, the emulated chlorophyll fields are considerably better than
those of any model run with fixed parameters, which was to be
expected. The fact that the lowest distance is associated with the
no-smoothing path, indicates that at least part of the improvement
is due to overfitting the data. At low smoothing intensities the emu-
lated values fit even outlying values and noise very well, completely
disregarding the model dynamics.

In the following section we perform a cross-validation to address
this issue and determine for which smoothing intensities overfitting
is not a concern. The cross-validation also allows us to identify the op-
timal level of smoothing.

3.2.2. Choosing the optimal smoothing parameter in a cross-validation
experiment

The jagged nature of the parameter paths at low smoothing inten-
sities (Fig. 5(a)) indicates overfitting of the model to the observations.
Cross-validation experiments provide us with a technique to distin-
guish overfitting from real improvement in model performance. We
follow the typical approach where the observational data set is parti-
tioned into two parts, the training set and the validation set. The
training set is only used to optimize the model parameters, the qual-
ity of the model output is then assessed by a comparison with the

validation set. Overfitting the training set will not lead to a better
model performance with respect to the validation set.

We performed multiple cross-validation experiments in a boot-
strap fashion. In each experiment, the observations were split into
training and validation set in the following way. The training set con-
tains the first and last satellite images as well as a number of randomly
selected images in between; the validation set consists of the remain-
ing images. We then performed 25 cross-validation experiments for
each of five training set sizes (175, 150, 125, 100 and 75) ranging
from half of our observational data set to roughly one fifth. In each ex-
periment, we determined the parameter path according to the proce-
dure described in Section 3.1.3, but only using the training data set.
This way we obtained optimal parameter values corresponding to
the time steps of the training data. We determined the quality of
these parameter values with respect to the validation data set in 3
steps: (1) We linearly interpolated the parameter values correspond-
ing to the training set dates in time to obtain the parameter values for
the validation set dates. (2) We used the freshly obtained parameter
values to interpolate the surface chlorophyll field in parameter
space, yielding a surface chlorophyll field for each validation set
date. (3) With our standard distance measure, we computed the dis-
tances of the surface chlorophyll fields to the validation data and cal-
culated the average distance.

The average distance values obtained through the above procedure
are shown as red dots in Fig. 6, and exhibit a clear difference compared
to the values of the emulation experiment without cross-validation
(Fig. 6, blue diamonds). First of all, the cross-validation distance values
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are generally higher than those of the emulation experiment. This is to
be expected from a cross-validation experiment which uses two sepa-
rate data sets for optimizing parameters and assessing the fit. More
important is another difference: While the setup without cross-
validation has the lowest distance at a smoothing intensity of 0 and
then increases steadily, the cross-validation mean has a minimum at
a smoothing intensity of 10, corresponding to a smoothing window
width of 21 days. The minimum is relatively flat toward higher
smoothing intensities but shows a sharper incline for intensities
lower than 5. This property is strong evidence for the presence of over-
fitting at low smoothing intensities. For no or little smoothing the jag-
ged parameter path describes the noise in the observations and the
parameter values do not generalize well to the validation data set in
the cross-validation. As the smoothing is increased, overfitting be-
comes less of a problem and disappears. When smoothing is increased
even further, useful information in the observations is filtered out so
that average distances increase again, albeit at a slow rate. We there-
fore consider a smoothing intensity of 10, the position of the minimum
of the cross-validation mean curve, the optimal smoothing intensity
for our emulation experiment, and use it as the standard smoothing
intensity for the emulation experiment in the following section.

In this section and the previous one, we have shown that the time-
dependent parameter paths in combination with state interpolation
can be used as an emulation tool that produces state estimates
which are considerably better than those of any fixed parameter
model run. The improvement is not due to fitting noise in the data,
as the smoothing intensity can be adjusted to avoid the problem
of overfitting; it is due to the presence of an underlying time-
dependence or seasonal cycle in the parameters. In the following,
we assess the utility of the parameter paths for obtaining time-
dependent parameter values for our biological model.

3.3. Model runs with time-dependent biological parameters

In addition to obtaining improved estimates of chlorophyll by
means of a polynomial chaos interpolation, the parameter paths can

also be used in a more straightforward way. One can perform biolog-
ical model runs with time-varying values of 6, and 6, by plugging pa-
rameter paths directly into the model. The values of the two
parameters are taken from a specific parameter path and so the re-
sults are again dependent on the smoothing intensities used to obtain
the path.

To implement time-varying parameters in our model we extended
the parameter paths which are defined only for the discrete time
steps t=1,...,Myps, to the interval [1,nops] by linearly interpolating
the paths in time. In the numerical model this was implemented by
incorporating a simple lookup table for the parameter values at
t=1,...,nops. At each model time step the model looks up the values
of 0, and 6, that correspond to the two closest points in time and per-
forms the time interpolation. By using different lookup tables, one can
perform model runs for different parameter paths or smoothing in-
tensities. We set the initial values of 6; and 6, to the first value of
the parameter path and ran the model, keeping all other settings
unchanged. Again, we computed the average distance values for the
time-varying parameter runs (Fig. 6, yellow squares).

For the time-dependent parameter runs, the lowest average dis-
tance is achieved at a smoothing intensity of 5 (Fig. 6, yellow
squares), although there appears to be no strong dependence on the
smoothing intensity as all distance values are very closely grouped.
Generally, the time-dependent parameter results are in between
those corresponding to the emulation experiment described in
Section 3.2.1 (Fig. 6, blue diamonds) and the optimal fixed model
run results (Fig. 6, dashed black line). One would expect a degraded
performance of the time-varying runs in comparison to the emulated
results given the memory of the model with time-dependent param-
eters, an effect that we will reconsider in the discussion in Section 4.
However, the improvement in average distance in comparison to the
optimal fixed parameter run is still large. In comparison with the op-
timal fixed values of 6; and 6,, the model creates considerably better
chlorophyll output if we allow the values to change in time. As the
model reacts relatively slowly to shifts in parameter values and the
average distance values of the different time-varying runs are very
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similar we can conclude that these runs do not overfit the data. To
further assess the improvement we performed a follow up compari-
son of the estimated chlorophyll values using the 3 estimators: the
optimal fixed parameter run, the time-dependent parameter run
and the emulation experiment, in the following section.

3.4. Temporal and spatial analyses

3.4.1. Spatial comparison of chlorophy!ll estimates from model
and emulator

In order to assess how the differences in average distance values
for our 3 runs, the optimal fixed parameter run (Section 3.1.2), the
time-dependent parameter run (Section 3.3) and the polynomial
chaos-based emulation experiment (Section 3.2.1), translate into dif-
ferences in surface chlorophyll we calculated the regional chlorophyll
averages for 3 regions of the model domain, the estuaries, the coastal
and the open ocean region (Fig. 7). In the estuaries, all model esti-
mates of chlorophyll underestimate the observations (Fig. 7(a)).
This result is not unexpected, as the relatively coarse resolution
model cannot adequately represent estuarine dynamics. Additionally,
satellite chlorophyll estimates might be biased due to high levels of
colored dissolved organic matter in the water which are known to en-
hance the chlorophyll signal in satellite images (Mannino et al.,
2008).

The model estimates agree better with the observations in the
other two regions, the coastal region and the open ocean. In both re-
gions it is also apparent that the time-varying parameter model run
and the emulated state estimates show improvement over the opti-
mal fixed parameter run. A look at the deviations from the data,
shown in Fig. 8, reveals that surface chlorophyll estimates are indeed
most accurate for the emulated state estimates, followed by the time-
varying parameter model run and the fixed parameter model run. Im-
provement is especially evident in April, during the spring bloom. In a
few instances, the fixed parameter model produces the lowest abso-
lute residuals in some regions of the model. These are however offset
by higher residuals in other regions (compare, e.g., the June residuals
in Fig. 8 across all 3 regions). This demonstrates that there is no

uniform improvement across the entire model domain, instead the
improvement achieved by time-varying parameters depends on
both time and space.

Generally, improvement is more likely where our parameter vari-
ation induces the greatest variance into the surface chlorophyll state.
This observation follows from a comparison of the absolute residuals
with the conditional variance (see Eq. (6); shown as gray area in
Fig. 8). Where the conditional variance is high, a change in the param-
eter values has a large effect on the surface chlorophyll concentration.
This, in turn, allows for more effective adjustments of the chlorophyll
concentration by means of changing 6; and 6.

3.4.2. Spatial differences in optimal parameter values

Based on the optimal smoothing intensity found in Section 3.2.2,
we now re-evaluate the development of optimal parameter values
in time and examine the uncertainty in the model state. Instead of
using the minimum as a point estimate for an optimal parameter
value, we are interested in a region of good parameter values. These
values are “good” in the sense that they are associated with low
(but not necessarily minimal) distance values. To determine good pa-
rameter values, we performed the following steps: (1) For each day
with available data, we interpolated the corresponding distance func-
tion in parameter space using the polynomial chaos expansion.
(2) For each of the distance functions, we determined the region in
parameter space that makes up 20% of its lowest values. (3) Finally,
we computed the frequency with which a given pair of parameter
values is contained within the 20% region. We expect that a good
pair of parameter values is contained frequently in the 20% region
of lowest distance values. The frequency of occurrence in this region,
obtained for all parameter values, therefore provides us a with an es-
timate of the distribution of good parameter values which can be vi-
sualized easily.

Estimates of the parameter distribution for each season (Fig. 9(a)),
obtained by the procedure described above, correspond well to the
parameter paths in Fig. 5, yet the distribution additionally reveals fea-
tures hidden in the point estimates. For example during the spring
(AMJ; corresponding to April, May and June) there appears to be
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very little sensitivity to changes in 6,, the zooplankton grazing pa-
rameter, and good parameter values are distributed all along the 6,
axis. In summer (JAS; July, August, September), the distribution
changes in this respect, as low values of 6, become less probable as
good parameter values. Seasonal differences are generally apparent,
strengthening our previous observations that optimal parameter
values change in time.

So far, we focused mostly on the change of parameters in time, but
we can also use the same methodology for an analysis of spatial dif-
ferences. For a spatial analysis, we use the 3 model regions introduced
in Section 3.4.1 and shown in Fig. 7. All previous results were based
on the distance function introduced in Eq. (1) which uses the full
data set to compute distance values. By including observations from
within one of the 3 regions only, the distance values can be recom-
puted and we can gain an understanding of suitable parameter values
for that region. In order to detect spatial differences in good parame-
ters we performed the distribution estimation for the 3 regions again
(Fig. 9(b,c,d)).

Differences between model regions are apparent. In the estuaries,
where chlorophyll is always underestimated, good parameter combi-
nations tend to increase chlorophyll by combining high values of the
chlorophyll-to-carbon ratio with low values of the zooplankton graz-
ing rate throughout the whole year. More temporal variation is evi-
dent in the other two regions. In the shelf region, seasonal changes
are most apparent and values of the zooplankton grazing rate tend
to be generally high, especially in spring and summer. This result cor-
responds well to the tendency of the optimal fixed parameter run to
overestimate chlorophyll during those months. In the outer ocean re-
gion which exhibits the lowest chlorophyll values, the model tends to
be most insensitive to changes in the zooplankton grazing parameter
whereas a very narrow range of 6, is preferred. The low amount of
chlorophyll combined with relatively little chlorophyll variability sus-
tains only a small population of zooplankton, thus the grazing param-
eter of zooplankton has a low impact.

Taken together, the results for the 3 model regions account for the
full domain result presented above. The distance measure that was

used (AGB) has no knowledge about the regions, thus the influence
of the regions on the general result is mainly determined by their
size. Hence, the large coastal and open ocean regions far outweigh
the influence of the small estuaries region. Due to their different pa-
rameter preferences, the fit between data and model remains rela-
tively poor for the estuaries region (compare Fig. 8). Despite being
small, the estuaries exert a constant influence on the parameter esti-
mation to raise chlorophyll levels. Here the polynomial chaos based
interpolation shows its strength as a model analysis tool.

4. Discussion

In this study we obtained improved surface chlorophyll estimates
from a biological ocean model by treating two of its parameters as
stochastic. This was achieved through the approximation of the
model by a low dimensional emulator, the polynomial chaos expan-
sion. Using the polynomial chaos expansion in combination with a
model-data distance function we found that the values of two biolog-
ical parameters have a clear time dependence and follow a seasonal
path through parameter space (Fig. 5).

At two points in this study we encountered high frequency varia-
tions; they appeared in the distance function (Fig. 2) and the derived
parameter paths (Fig. 5). In the case of the distance function we attri-
bute the high frequency signal to noise and missing values in the
chlorophyll images. The high frequency changes in the parameter
paths indicate that the same noise is overfitted by our optimization
procedure. We confirmed this inference in a cross-validation experi-
ment (Section 3.2.2), where we observed a strong increase in the av-
erage distance value for low smoothing intensities while the best
results were achieved at medium smoothing intensities (Fig. 6). This
result is evidence that the improvement of our time-varying parame-
ter state estimates is based on an actual signal in the observations
that is not captured in the fixed parameter run.

By treating only two biological parameters as stochastic and by
adjusting them to fit the observations, we do not account for the
fact that model-data discrepancies are also caused by other sources
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Fig. 9. The distribution of good parameter values in parameter space (compare Section 3.4.2) depending on season. The first panel shows a contour plot of the distributions for the
entire model domain, the other panels contain the distributions for the 3 regions shown in Fig. 7.

of model error, such as the other biological parameters, parameters of
the underlying physical model, physical forcing, boundary and initial
conditions as well as the functional form of the equations themselves.
For example, the selection of the maximum chlorophyll-to-carbon
ratio () as a stochastic parameter and its optimization may adjust
for errors in the phytoplankton growth rate and errors in the model's
nutrient supply. A fully Bayesian approach, which would incorporate
all sources of model uncertainty, is computationally infeasible. We
chose to focus this study on one obvious shortcoming of the model,
the representation of phytoplankton and zooplankton as homoge-
nous groups. Within this much more limited scope, we selected the
two parameters that have the strongest influence on the model's
chlorophyll concentration. Here, our motivation is simply that the
most sensitive parameters will likely be identifiable using chlorophyll
data and yield the biggest improvement in chlorophyll estimates.
Although we have no detailed information on the phytoplankton
species succession and seasonal changes in grazing rate, we can
attempt a qualitative comparison of the development of 6; and 6,
with typical seasonal changes in the plankton composition of
the Middle Atlantic Bight. In our model run with time-varying

parameters, there is a positive correlation between the inverse of
the maximum chlorophyll-to-carbon ratio (%) and the achieved phy-
toplankton carbon-to-chlorophyll ratio (C:Chl) in the surface
(Fig. 10(a)). In comparison to the model with optimal fixed parame-
ters, the time-varying parameters lead to an increase in C:Chl in the
summer months following the phytoplankton spring bloom. In the
Middle Atlantic Bight dinoflagellates typically dominate the phyto-
plankton community in the shelf region during summer (Marra et
al.,, 1990) while diatoms are the dominant phytoplankton group dur-
ing the spring bloom (Barlow et al., 1993). Due to a significantly lower
C:Chl in diatoms in comparison to dinoflagellates (Chan, 1980), we
would expect a lower C:Chl during the spring bloom and a higher C:
Chl in summer. While the optimal fixed parameter run shows no
marked increase in C:Chl as the bloom subsides, there is a notable in-
crease in the C:Chl induced by the time-varying parameters, consis-
tent with our expected C:Chl development (Fig. 10(a)). This
improved correlation does not imply causation, as we have pointed
out in the previous paragraph, yet it is consistent with the hypothesis
that variations in C:Chl are significantly affected by shifts in the phy-
toplankton composition.
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Fig. 10. The development of the time-varying values of 6, and 6, (smoothing intensity of 10, compare Fig. 5) in relation to the development of the surface chlorophyll content. In
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Evaluating the development of 65, the zooplankton grazing param-
eter, is more difficult. In the model, the zooplankton maximum occurs
in the summer, is preceded by a notable increase in 6, in April
(Fig. 10(b)) and remains high for several months until November.
This pattern may reflect a correction of the seasonal cycle of zoo-
plankton. The increase of 6, in April enhances zooplankton grazing
and hints that the effect of grazing in the model is too low at that
time of the year. Kane (2005) found that the zooplankton species
Calanus finmarchicus, an important part of the zooplankton popula-
tion, shows a sharp increase in abundance in early spring and suggest
that it is a consequence of an import of zooplankton into the Middle
Atlantic Bight from neighboring regions. Such a process is unaccount-
ed for in the biological model and could explain the development of
0, in spring. Lack of import causes an underestimation of zooplankton
abundance and grazing in the model, which is counteracted by an in-
creased zooplankton grazing parameter. It should be noted, however,
that it may be difficult to constrain the zooplankton parameter using
chlorophyll observations, given the indirect effect of changes in zoo-
plankton grazing on chlorophyll. In addition, zooplankton dynamics
are known to be highly variable from one year to the next, even
under similar phytoplankton conditions (Flagg et al., 1994).

Given our self-imposed restriction of optimizing two parameters,
the improvement in surface chlorophyll estimates is considerable.
By using the parameter paths as time-varying parameter values,
more improvement can be achieved than by changing 6, (the zoo-
plankton grazing parameter and one of the models’ most sensitive pa-
rameters) from its most disadvantageous value in our broadly
selected parameter range, to its optimum value (Fig. 3). The results
of our emulation experiment tend to be better than those of the bio-
logical model simulation with time-varying parameters; the main
reason for this is that the emulation experiment is not bound by the
model dynamics and changes in parameters become effective imme-
diately. In contrast, the time-varying parameter model run has a
memory of accumulated (or lost) chlorophyll and a change in param-
eter value needs some time to translate into a changed surface state.
We expect that the level of improvement to be gained from time-

varying parameters, will in general depend on the model's memory,
where properties with fast response will be more prone to
improvements.

We varied only two of the biological parameters and decided to
keep the general setup simple, e.g. by using the entire data set with-
out excluding outliers. The distance function we interpolated ap-
pears to be smooth and well approximated by the polynomial
interpolation (Fig. 3). Consequently, we can still expect good results
for fewer quadrature points in parameter space, which have the ben-
efit of decreasing the number of necessary model runs. Yet even
after a reduction of quadrature points it would be computationally
expensive to extend our analysis to more than a few parameters.
Other emulator approaches can sample parameter space in a more
efficient, non-grid based manner (e.g. Latin hypercube sampling in-
troduced by McKay et al. (1979) or a free selection of parameter
values as in Hooten et al. (2011)) and may be better suited for pa-
rameter estimation in higher dimensional spaces. One advantage of
the polynomial chaos technique is that it offers a straightforward
way to obtain model uncertainty estimates (see Section 2.3), which
do not require an additional analysis step. In contrast to other emu-
lators that do not utilize basis functions, there is no need to run
Monte Carlo-based sampling techniques within the emulator frame-
work to obtain approximates of model uncertainty (integrals of in-
terest can be evaluated directly with the help of the polynomial
basis functions).

We focused this study on one specific data type, satellite images of
chlorophyll, in conjunction with one specific model-data distance
measure, the AGB. The approach we took to estimate optimal param-
eters and further obtain improved state estimates is very flexible and
allows for the use of other model-data distance measures (such as
RMSE), other data types (such as in-situ measurements) and combi-
nations of different observations. Any model-data distance measure
suitable for the comparison of the data type of choice or a (weighted)
sum of multiple such distance measures would have to be substituted
for the distance function d in Eq. (1). The polynomial chaos expansion
can then operate on the new distance values without any further
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changes. In fact, the use of one or more new data sets or new distance
measures does not require new model simulations.

A great advantage of the polynomial chaos expansion is the
amount of postprocessing and analysis options. Once the necessary
model simulations have been performed (in our case 49 runs) various
different analyses, from distance function interpolation, to spatial an-
alyses and chlorophyll surface state interpolations, can be performed
without any further model simulations. In addition to direct estimates
of the model output, the polynomial chaos expansion also provides us
with estimates of the conditional variance (Eq. (6)) of the output.
While it is not a measure for the full model error, knowledge of the
conditional variance can be useful for analyzing the model output,
for example, to gauge the impact of the parameter variation on a spe-
cific model region or time. In our analysis, the conditional variance
(Fig. 8) gives a good indication where in space and time model im-
provement is possible by means of parameter optimization. Given
these advantages, we consider the polynomial chaos expansion a use-
ful tool for model analysis and the introduction of uncertainty into bi-
ological models.

Our study offers some insights into general parameter optimiza-
tion issues. The average model-data distance function is well behaved
and contains a clearly defined global minimum (Fig. 3), which even
simple parameter optimization techniques will find easily. Yet its
smoothness hides the fact that the optimal parameters for individual
observations are widely scattered in parameter space (Fig. 5). Part of
the reason for the wide spread of optimal parameter values is the
strong underlying time dependence. Were we to optimize our
model with fixed parameters using only satellite data from spring
months, we would get significantly different results than by using
fall data (Fig. 9). By optimizing the model with a full year's worth of
observations the fixed parameter values fall somewhere in between
the optimal seasonal values. For this study, only one year of daily sat-
ellite observations was used. One of our next steps will be to analyze
if the parameter paths generalize well for other years.

5. Conclusions

The model-data fit of a typical biological ocean model can be
greatly improved by allowing its biological parameters to vary in
time. We obtained the parameter values of two biological parameters
by minimizing a time-dependent distance function using an
emulator-based approximation. State estimates that are based on
the time varying parameters fit observations much better than
those gained from the optimal fixed parameter run. This improve-
ment is not due to overfitting the data, instead there is a low frequen-
cy variation present in the parameter values: the two biological
parameters analyzed here appear to follow a seasonal cycle in param-
eter space. The development of at least one of the parameters
matches patterns observed in plankton dynamics in the Middle Atlan-
tic Bight.

Beside temporal differences, we also detect spatial differences of
optimal parameter values for selected model regions. The estuaries
and coastal and open ocean regions in our model domain show
clear preferences for distinct parameter values. The polynomial
chaos expansion can help identify spatial differences, detect model
regions with a generally bad fit to the data and assess their influence
on optimal parameter values.

The polynomial chaos expansion proved to be a versatile tool for
the optimization and analysis of our biological model. While compu-
tational cost limits the number of parameters one can analyze jointly
to just a few, we achieved large gains by analyzing only two parame-
ters that the model is sensitive to. The number of postprocessing op-
tions we gained after performing the necessary model runs is great:
model uncertainty estimates can be obtained directly and multiple
parameter estimations with different data sets can be performed effi-
ciently without the requirement for any additional model runs.
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