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[1] We assimilate satellite observations of surface chlorophyll into a three-dimensional
biological ocean model in order to improve its state estimates using a particle filter referred
to as sequential importance resampling (SIR). Particle Filters represent an alternative to
other, more commonly used ensemble-based state estimation techniques like the ensemble
Kalman filter (EnKF). Unlike the EnKF, Particle Filters do not require normality
assumptions about the model error structure and are thus suitable for highly nonlinear
applications. However, their application in oceanographic contexts is typically hampered by
the high dimensionality of the model’s state space. We apply SIR to a high-dimensional
model with a small ensemble size (20) and modify the standard SIR procedure to avoid
complications posed by the high dimensionality of the model state. Two extensions to the
SIR include a simple smoother to deal with outliers in the observations, and state-
augmentation which provides the SIR with parameter memory. Our goal is to test the
feasibility of biological state estimation with SIR for realistic models. For this purpose we
compare the SIR results to a model simulation with optimal parameters with respect to the
same set of observations. By running replicates of our main experiments, we assess the
robustness of our SIR implementation. We show that SIR is suitable for satellite data
assimilation into biological models and that both extensions, the smoother and state-
augmentation, are required for robust results and improved fit to the observations.
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1. Introduction

[2] Numerical ocean models are growing in their capa-
bilities and their significance for ocean research and predic-
tion. At the same time, an ever larger number of observing
platforms, ranging from underwater observatories to satel-
lites, provide an unprecedented wealth of ocean informa-
tion. Data assimilation procedures, which combine models
and observations, represent the principal means by which a
large number of observations can be used to improve model
estimates and forecast abilities, and quantify uncertainty.
Two major categories of data assimilation methods are: (1)
variational methods, such as 4DVAR [Bennett, 2002] and
(2) ensemble methods, such as the ensemble Kalman filter
(EnKF) [Evensen, 2009]. Ensemble, or sample-based,
approaches have become popular in recent years due to
their relative ease of implementation, and their straightfor-

ward treatment of model error. They treat the data assimila-
tion problem from a probabilistic perspective and use
Bayesian principles to blend model predictions with obser-
vations [Wikle and Berliner, 2007].

[3] Particle filters represent a very general class of en-
semble-based statistical data assimilation techniques that
offer complete solutions to nonlinear and non-Gaussian
data assimilation problems [Ristic et al., 2004]. For particle
filters, there are no restrictive assumptions about the proba-
bility distributions, unlike the EnKF which assumes that
the prediction and filtering distributions are normal, and
that the likelihood function is linear and normal. When
these assumptions are violated the EnKF solutions are sub-
optimal [van Leeuwen, 2010], which has been demon-
strated for nonlinear systems [Dowd, 2007]. Hence, the
generality of the particle filter makes it attractive for appli-
cation to the complex, highly nonlinear models encoun-
tered in oceanography and meteorology. Yet, particle filters
have been applied infrequently due to practical problems in
the ensemble representation in high dimensional applica-
tions [van Leeuwen, 2009] (also see discussion in section
5). Here, we present a particle filter that focuses on parame-
ter and chlorophyll state estimation for a 3-D biological
ocean model, a complex system with a high-dimensional
state space. In this application a number of modifications
are introduced that improve the particle filter’s robustness
and allow for effective data assimilation.
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[4] As a basis, we use sequential importance resampling
(SIR) [Gordon et al., 1993; Kitagawa, 1996], the most
standard particle filter algorithm. Like all particle filters,
SIR is a sequential or recursive technique which assimilates
observations in sequence, a setup that is suitable for online
estimation, i.e., forward operation and prediction. For the
purpose of state estimation, particle filters use an ensemble
of model simulations, run in parallel, that allow for the
approximation and propagation of model uncertainty, and
blending with measurement information. While applica-
tions of other ensemble techniques, especially the EnKF,
are numerous in oceanography [Ciavatta et al., 2011; Hu
et al., 2012], most SIR particle filters have only been
applied in the context of relatively simple models [Dowd,
2007; Mattern et al., 2010a] or using synthetic (typically
model-generated) observations [Annan and Hargreaves,
2010] which do not contain outliers or observation errors.
Here, we apply SIR to a complex 3-D biological ocean
model of the Middle Atlantic Bight (MAB) in the North At-
lantic [Hu et al., 2012; Mattern et al., 2012], and assimilate
daily satellite observations of chlorophyll derived from
ocean color.

[5] In our approach, we evade problems posed by the
high dimensionality of the model by allowing errors in a
few select biological parameters only. By ignoring model
errors arising from other sources, such as physical model
inputs, the procedure is effectively operating in a much
lower dimensional error subspace. While only two biologi-
cal parameters are selected to contain errors in this applica-
tion, the error subspace approach can be easily extended to
more parameters and other stochastic inputs.

[6] Our approach for particle filter-based data assimila-
tion is motivated by previous research. In Mattern et al.
[2012], we used the same ocean model and the same set of

observations to optimize biological parameters using poly-
nomial chaos, a statistical emulator technique. We obtained
chlorophyll state estimates and biological parameters esti-
mates from the emulator. We also emphasized the use of
time dependent (seasonally) evolving parameter values,
which explained the observations considerably better that
the optimal fixed parameters (see, e.g., Figure 1). The time-
dependence of the parameters is in part attributed to sea-
sonal changes in the plankton populations (species compo-
sition), which cannot be adequately represented by just a
few bulk plankton variables and fixed parameters [Mattern
et al., 2012]. Here we use the same model setup as a suita-
ble test bed for combined state and parameter estimation
with a particle filter.

[7] The goal in this study is to explore the potential of
this particle filter configuration and identify effective
approaches that allow us to obtain model chlorophyll and
biological parameter estimates through data assimilation.

2. Methods

2.1. Particle Filtering Overview

[8] Before presenting our particle filter implementation,
we provide a short overview of the basic particle filtering
procedure. More detailed descriptions of particle filters and
some of their extensions can be found in Ristic et al.
[2004], Dowd [2007], and van Leeuwen [2009].

[9] For particle filters and ensemble-based data assimila-
tion techniques in general, models are considered to be sto-
chastic, i.e., the model state is represented by a multivariate
probability distribution. This probability distribution is
approximated with an ensemble of particles. Each particle,
or ensemble member, contains a particular model state that
represents a sample from its probability distribution.

Figure 1. Time evolution of the optimal parameter values for individual images within our satellite
dataset. Each dot represents the pair of optimal parameter values for one satellite image. (a) Without any
smoothing the parameter development is dominated by high frequency variation; (b) by smoothing the
underlying distance function in time, the low frequency signal is more apparent. Plots are taken from
Mattern et al. [2012].
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Starting with an initial ensemble of particles (which we
generate by running the model multiple times with different
parameter values), sequential data assimilation techniques
perform a sequence of assimilation steps to propagate the
ensemble forward in time and update it with information
from observations as they become available. Each assimila-
tion step consists of two distinct substeps: the forecast step,
and the observation update step.

[10] The forecast step simulates the time evolution of the
ensemble. Each particle is moved forward in time with the
numerical model. For this purpose, the model state
associated with each particle is used as an initial condition
for the model and a model simulation is started for each
particle. The model simulations are run until the next point
in time with available observations and a new ensemble is
formed from the most recent model states. In the subse-
quent observation update step, the new ensemble is updated
with information from the newly available observations.
This update typically accounts for observation errors as
well as model uncertainty which is derived from the
ensemble. While the forecast step is conceptually the same
in all sequential techniques, including the EnKF, the filters
differ in their implementation of the observation update
step.

[11] The SIR observation update step consists of a
weighting of each ensemble member dependent on the cur-
rent observations, and a subsequent weight-based resam-
pling. The weights assigned to each particle represent their
distance from the current observations. In particle filter
theory, the weight of the ith ensemble member x

ið Þ
t given the

current observation yt is equal to the likelihood pðytjx ið Þ
t Þ

(the probability of the observations given the ensemble
member). In practice, this likelihood is often unknown (and
in case of high-dimensional model states, typically infeasi-
ble to compute) and thus the weights need to be
approximated.

[12] After the weights have been determined, a weight-
based resampling of the ensemble is performed. An ensem-
ble member with high fidelity to the observations, and
therefore a large weight, has a higher probability of being
drawn during the resampling than a lower-weighted parti-
cle. The sampling is performed with replacement so that
particles can be drawn more than once. This means that at
the end of the resampling the new ensemble will typically
include multiple replicates of high-weighted particles,
while some low-weighted particles do not get resampled
(in other words, the resampling is a weighted bootstrap).
Through this procedure, the current observations have now
been assimilated into the updated ensemble, and the ensem-
ble-approximated model distribution has been made more
consistent with the observations. The model-generated
states that enter the observation update are left intact and
remain true to the model dynamics, as the resampling intro-
duces no potentially undesirable shifts in the model state of
ensemble members.

2.2. Model Overview

[13] In this study we apply our particle filter to a 3-
dimensional physical-biological ocean model. This model
has previously been employed in the data assimilation stud-
ies of Mattern et al. [2012] and Hu et al. [2012] and a thor-
ough model description is given in the latter. Here, we

provide a short summary. The domain of the model is the
MAB, a region in the northwestern North Atlantic that
stretches from Cape Cod in the north to Cape Hatteras in
the south (Figure 2). The model is based on the regional
ocean modeling system [Haidvogel et al., 2008] and con-
sists of a 3-dimensional physical model coupled with a bio-
logical component. The model domain is divided into
130� 82 horizontal grid cells with a resolution varying
from � 5:5 km in the estuaries to � 8:0 km in the open
ocean. In the vertical, the model water column is divided
into 36 layers with a higher resolution near the surface. The
physical model includes runoff of major rivers, tides, and
uses open boundary conditions for all state variables, as
described in detail in Hu et al. [2012]. The biological com-
ponent, which we focus on in this study, is described in
Fennel et al. [2006] and has been used successfully in vari-
ous modelling studies [Fennel et al., 2008; Fennel and Wil-
kin, 2009; Previdi et al., 2009; Fennel, 2010; Bianucci et
al., 2011]. It contains 7 state variables (phytoplankton, zoo-
plankton, chlorophyll, nitrate, ammonium and small and
large detrital nitrogen) that simulate a simplified nitrogen
cycle. Chlorophyll is modelled separately from phytoplank-
ton to account for the effects of photoacclimation, which
allows phytoplankton species to regulate their chlorophyll
content based on the availability of light and nutrients
[Geider et al., 1998]. A separate chlorophyll variable can
be compared directly to observations, thereby facilitating
assimilation. There is no feedback from the biological com-
ponent to the physical model, so that the physical state vari-
ables remain unaffected by changes in the biological state
variables.

[14] The initial and boundary conditions for the biologi-
cal variables are taken from an implementation of the
same model in a larger scale domain of the northeast
North American shelf and adjacent deep ocean [Fennel et
al., 2008]. For the physical model, open boundary
conditions for temperature, salinity, subtidal frequency ve-
locity and sea level are taken from the larger scale MAB
and Gulf of Maine regional model described in Chen and
He [2010].

2.3. Chlorophyll Observations

[15] The assimilated observations are daily images of
surface chlorophyll concentrations derived from the Sea-
WiFS satellite for 2006. Each of the available 350 images
represents one or an average of multiple satellite passes.
The observations are obtained at a resolution of 1 km; to
facilitate model-data comparison, they are interpolated
onto the model grid. A more detailed description of the
observations is given in Hu et al. [2012].

[16] By assimilating daily observations, instead of
weekly or monthly composites, we aim to retain short-term
features in the images and allow for better prediction of the
timing of events such as phytoplankton blooms. Assimila-
tion of daily images also tests the particle filter’s ability to
deal with outliers and missing values: Large portions of the
images can be missing due to clouds and other effects, so
that some images contain only localized information about
parts of the domain. In addition, significant noise is present
in the satellite dataset, especially close to the coast. As
noted in Mattern et al. [2012], high noise levels and the
abundance of colored dissolved organic material impede

MATTERN ET AL.: PARTICLE FILTER-BASED DATA ASSIMILATION

2748



data assimilation and parameter estimation in the estuaries.
For this reason, we exclude the estuaries from the assimila-
tion experiments presented here.

2.4. Biological Parameters of Interest

[17] The ensemble generation is an important aspect of
our particle filter implementation and relies on treating two
selected parameters of the biological model as stochastic.
In this section we will briefly describe the role of the two
parameters in the model and motivate why we selected
these parameters in particular.

[18] The first parameter of interest, �1, is the phytoplank-
ton maximum chlorophyll-to-carbon ratio, it regulates the
mechanism by which phytoplankton can adapt their chloro-
phyll content. The second parameter �2 is the maximum
grazing rate of zooplankton, a multiplicative factor control-
ling the rate at which zooplankton consume phytoplankton.
While �1 affects the chlorophyll variable in the model
directly, �2 has a more indirect effect on chlorophyll,
through altering the grazing pressure on phytoplankton and
hence their abundance. Our motivation for selecting these
two parameters is twofold: Firstly, the model exhibits a
strong sensitivity to relative changes in both parameters,
especially �1. Consequently, even small parameter adjust-
ments can have a large effect on the chlorophyll output of
the model. Secondly, both parameters are physiological
plankton parameters known to vary greatly among species
and can thus be considered stochastic with a high uncer-
tainty. Varying these parameters presents a suitable way to
produce variable chlorophyll output in the model. While it
would be easy to incorporate more parameters into the par-
ticle filter procedure, we limit ourselves to these two pa-

rameters because we have examined their effects
and identified their optimal values in a previous study
[Mattern et al., 2012]. This allows us to compare the
particle filter-based parameter estimates to our previous
results.

3. Particle Filter Implementation

[19] In this section, we describe the aspects of the parti-
cle filter implementation that are important to this applica-
tion and deserve special attention. While the SIR
resampling is straightforward to implement, the computa-
tion of the weights can be implemented in various ways
and needs careful consideration.

[20] In this application, each particle in the ensemble is a
realization of the biological state of the system consisting
of the concentrations of the seven biological state variables
in each of the 82� 130 horizontalð Þ � 36 verticalð Þ ¼
383760 grid cells of the model. As the state of the physical
ocean model is unaffected by the biological parameters, it
remains deterministic and does not need to be considered
by the SIR procedure, or even included in the state vector.
With only the biological variables included, a state vector
is 7� 383760 ¼ 2686320 dimensional. For some of our
SIR experiments, we additionally append two model pa-
rameters to the state, and this is described in more detail in
section 3.2 below.

3.1. SIR Weighting

[21] In the resampling step of the SIR procedure, a
weight is assigned to each ensemble member proportional
to its likelihood (see section 2.1). In practice, the likelihood

Figure 2. The model domain and its bathymetry. The dashed white lines mark the boundaries of the
shelf and open ocean regions used in our analysis.
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is typically unknown and can only be approximated. In this
implementation, we base the computation of the associated
weights on the assumption that the likelihood is inversely
related to a suitable distance measure for model state and
observations.

[22] Here, each observation is a satellite chlorophyll
image obtained at a higher resolution than the model
grid. To facilitate the comparison with model chlorophyll,
we first interpolate each satellite chlorophyll observation
onto the model grid and then transform the interpolated
observation into a real-valued image. For our model grid,
the transformation into an image is straightforward:
Because the horizontal model grid is approximately a
rotated regular grid, each surface grid cell is simply
mapped onto a single image pixel. The observations con-
tain missing values, which are transformed into pixels
containing missing values in the image (on average, the
proportion of missing values is 75%). Using the same
approach, we also transform the corresponding model sur-
face chlorophyll field into an image. The model-data
comparison is now reduced to the problem of comparing
two real-valued images, both of which typically contains
missing values (land grid cells within the model domain
are turned into missing values, see Mattern et al.
[2010b]).

[23] For image comparison, we use the adapted grey
block (AGB) distance measure introduced by Mattern et
al. [2010b], which was also used in the emulator study
by Mattern et al. [2012]. To compute an AGB distance
value, two images are compared at different resolution
levels by dividing them into successively smaller blocks
and computing the mean value of the pixels within
each block. The average absolute difference is then
computed at each resolution level, from the highest re-
solution, where each block consists of only 1 pixel, to
the lowest, where a single block encompasses the entire
image. Finally, the average absolute difference values
for every resolution level are summed to obtain the
AGB distance value. For the purpose of comparing sat-
ellite images, this multiresolution approach has proven
to be advantageous over standard approaches such as
the regular root mean square error because it is less
sensitive to noise and adapted to work with missing
values in the images [Mattern et al., 2010b]. The AGB
is also suitable for our purposes, because it factors in
features at various different spatial scales that may be
present in the model output or the satellite observations.
However, our SIR weighting implementation is flexible
and any suitable model-data distance measure could be
used.

[24] To transform the AGB distance values into weights,
we use the following procedure:

[25] 1. Compute di ¼ dAGB ðx ið Þ
t ; ytÞ, the AGB distance

between the current satellite observation and ensemble
member i for each i ¼ 1; . . . ; nens .

[26] 2. Calculate raw weights as the inverse of the AGB
values: ŵ ið Þ ¼ 1

di
.

[27] 3. Normalize the raw weights and transform them

according to: ~w ið Þ ¼ ŵ ið Þ

maxjŵ
jð Þ

� �aweight

, where aweight is an ad-

justable parameter that spreads (or contracts) the distribu-

tion of weights (discussed in more detail below).

[28] 4. Determine final weights as w ið Þ
t ¼

~w ið Þ
tPnens

j¼1 ~w
jð Þ

t

, so
that their sum is one.

[29] The parameter aweight in step (3) adjusts the weights
before they enter the resampling process. It does not change
the relative ranking of the weights but affects their var-
iance. The parameter aweight brings the weights closer to-
gether (for aweight < 1) or spreads them apart (for
aweight > 1). In practice, such an adjustment is needed if
the values of the weights are too similar or differ by orders
of magnitude. The former is the case in our application:
typical values of di (step (1)) are strongly dependent on the
satellite observation but do not vary much across the
ensemble of model simulations. Consequently, the normal-
ized raw weights obtained in step (2) are tightly
clustered (more than 70% of the raw weights are between
0.9 and 1.0 during a typical assimilation run). If no adjust-
ment is made to the weights before resampling takes
place (beside the normalization in step (4)), the ensemble
members are resampled at almost equal probability. As a
result, the effect of the resampling on the ensemble is very
small.

[30] Figure 3 shows the effect of varying aweight . For
aweight ¼ 1, which corresponds to no weight adjustment,
the SIR resampling will have almost no effect even in
cases where parameter and weights are strongly corre-
lated, i.e an increase in �1 is accompanied by an
increase in weights (Figure 3a). For higher values of
aweight , ensemble members with higher weights become
more likely to be picked during resampling (Figure 3b)
up to a point where one ensemble member dominates
the ensemble (Figure 3c). In the latter case the ensemble
is likely to collapse to just a few unique particles. The
adjustment of aweight has a similar effect as changing the
observation error distribution, which is done, for exam-
ple, to decrease the effects of outliers [van Leeuwen,
2003]. In this application, both the true likelihood and
the value of aweight that would best approximate the like-
lihood are unknown. Furthermore, we are limited to a
small number of particles, so that it is essential to select
aweight to extract a maximum amount of information
from the observations while avoiding ensemble collapse.
We set aweight ¼ 16 for this application. This was based
on a series of experiments in which we simulated thou-
sands of sequences of 5 to 10 consecutive assimilation
steps, using our satellite observations. In each experi-
ment, we measured the average raw weight (the weight
prior to normalization, see step (2)) of the ensemble af-
ter having performed several resampling steps, and esti-
mated the probability of ensemble collapse. The
parameter aweight was chosen to maximize the average
raw weight, while keeping the probability of ensemble
collapse low.

[31] The effects of this weighting implementation on the
ensemble structure and its development from one assimila-
tion step to the next are visualized in Figure 4 for a typical
SIR simulation with 10 ensemble members. It gives a
detailed view of the time history of the particles and the
effect of the weights on the resampling of the ensemble. By
tracing each particle back to its ‘‘parent’’ particle (the parti-
cle it was resampled from), we determined that 7.5 is the
average number of assimilation steps it takes to trace the
ensemble at a given assimilation step back to its last
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common ‘‘ancestor’’ particle (see green line in Figure 4).
This number indicates that the expected number of ensem-
ble collapse events is relatively low and that particles with
high likelihoods do not get too much weight. At the same
time it is apparent from Figure 4 that the weighting is effec-
tive at steering the ensemble.

3.2. State-Augmentation

[32] State-Augmentation is an extension that permits pa-
rameter estimation within the particle filter framework and
was introduced by Kitagawa [1998]. In this extension, the
model state xt is augmented by a vector of model parame-
ters, �t 2 Rn� to form

Figure 4. A detailed view of the development of �1 during a typical particle filter experiment with an
ensemble size of nens ¼ 10 over 68 assimilation steps. Each red dot marks one particle, the area of the
dot is proportional to its weight during the resampling (overlapping dots cause an increase in intensity).
The thin lines connect each particle to its ‘‘parent’’ particle from which it was resampled and its ‘‘chil-
dren’’ which are resampled from it. The lines highlighted in green trace the last ensemble at assimilation
step 68 back through their ancestors. The (vertical) parameter value offsets between a parent particle and
its children are due to the parameter noise that is applied during resampling. The ensemble median and
the region between the 0.1 and 0.9 ensemble quantiles are displayed in the background (dark gray line
and light gray area, respectively), for the plots in Figure 6 we use this, less detailed view of the ensem-
ble. For reference, the blue dashed line shows the smoothed optimal parameter values (see Figure 6).
The data for this plot is taken from one of our particle filter experiments in section 4.5, it uses our stand-
ard particle filter configuration.

Figure 3. Black dots show the weight of ensemble members during resampling over the corresponding
parameter value �1 for a weighting parameter aweight of (a) 1, (b) 16, and (c) 128. Weights are obtained
according to the procedure described in section 3.1. Also shown are the ensemble mean and standard
deviation of �1 (dashed and solid red lines) and the weighted ensemble mean (dotted blue line). The dis-
tance between weighted and unweighted ensemble mean acts as an indicator for the ensemble shift that
can be expected from the SIR resampling. For aweight ¼ 1 the ensemble is not likely to shift significantly
after resampling, due to the small differences in weights. By increasing aweight, differences in weight
become more pronounced, increasing the expected ensemble shift. For aweight � 128, one or just a few
ensemble members carry high weights, increasing the chance of ensemble collapse.
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x?t ¼
xt

�t

� �
:

[33] The new, augmented state vector replaces the regu-
lar state vector in the particle filter procedure (section 2.1)
so that the ensemble of state vectors now carries informa-
tion about parameter values, which are weighted and
resampled along with all other information contained in the
vector. The process of resampling parameter values yields
a time-dependent parameter distribution which can adapt to
improve the fit to the observations. Suitable parameter val-
ues produce good state estimates which are characterized
by being similar to the observations. This, in turn, results in
high likelihood values for state vectors with suitable pa-
rameter values, ensuring that they are resampled with a
higher probability than less suitable ones. As a result, after
a number of resampling steps, the ensemble should be
populated by the parameter values that best fit the observa-
tions [Dowd, 2011].

[34] In this application we augment the state vector by
n� ¼ 2 parameters. As described in section 2.4, these pa-
rameters are two biological parameters, the maximum car-
bon-to-chlorophyll ratio (�1) and the maximum
zooplankton growth rate (�2). Initial values for the parame-
ters are drawn from parameter specific uniform distribu-
tions, which are listed in Table 1 and based on parameter
ranges used in Mattern et al. [2012] (parameter ranges are
also shown in Figure 1). In our implementation of the parti-
cle filter procedure, the parameters in the state vector are
treated the same way as all other entries in x?t , with the
exception that perturbations of the model state only affect
the parameters.

3.3. Ensemble Generation and the Error

[35] In our final experiments, we examine the influence
of the ensemble size on our particle filter implementation.
Perturbations to the state vectors are necessary in our parti-
cle filter setup to prevent the ensemble from degenerating.
If no perturbations are introduced after resampling, two
replicates of the same ensemble member would result in
two identical model simulations, since both model state
and parameter values are resampled together. Over the
course of multiple assimilation steps, replicates of ensem-
ble members with high weights could replicate further and
the ensemble degenerate into a collection of one or just a
few unique ensemble members. This is referred to as en-
semble degeneracy or ensemble collapse and presents a
well-known issue with particle filters [Dowd, 2006]. Many
schemes have been developed to address this problem [van
Leeuwen, 2009]. Here, we simply perturb the parameters
that are part of the augmented state by adding normally dis-
tributed random noise to the parameter values after they

have been resampled. This approach avoids modifications
to the rest of the state vector, thus keeping the resampled
model states true to the model. While the model contains
other error sources, introduction of noise through parame-
ters and other model inputs is an effective way to add
uncertainty into the model results.

[36] In our implementation, the standard deviation of the
parameter noise is specific to each parameter and listed in
Table 1. In the rare cases where the noise causes a parame-
ter value to become negative, the sign of that value is
switched, ensuring positive parameter values. No measures
are taken to prevent parameter values from exceeding any
upper limit. From an implementation point of view, it is
important that enough noise is added to each parameter to
effectively counteract ensemble degeneracy, but not so
much that state-augmentation becomes meaningless. That
is, if the addition of noise causes the parameter values to
deviate far from their original values, the positive effect of
resampling the parameters will be lost.

[37] The evolution of the ensemble and its error sources
can be summarized in a state-space equation. With state-
augmentation, the state-space equation of this application is

xtþ1

�tþ1

� �
¼ Fmodel xt; �tð Þ

�t

� �
þ 0

e�

� �
;

[38] where Fmodel represents the model which propagates
the biological state xt from one assimilation time step to the
next, using the parameters in �t. The parameter vector �t is
only modified by the additive error term �� (as described
above, no error is introduced to the biological state
directly), which allows it to adapt to the observations
through the filter-based estimation procedure.

[39] We know already that in this application time vary-
ing values of �1 and �2 can describe the data significantly
better than the optimal fixed parameter set [Mattern et al.,
2012]. To allow the particle filter to capture the time de-
pendence of suitable parameter values, we choose a rela-
tively high standard deviation for the parameter noise,
permitting the parameter values to easily readjust over the
course of assimilation (Figure 4).

[40] The variation of �1 and �2 gives rise to the idea of
an error subspace: all of the error introduced into the en-
semble originates in perturbations of these two parameters.
Therefore, the particle filter ensemble needs to approximate
the two-dimensional parameter distribution, rather than the
much higher dimensional distribution of the state space. As
a consequence, we may expect good representation of the
distribution even for a relatively small ensemble.

[41] One shortcoming of this approach is that it is based
on the assumption that the model error can be explained by
a few parameters alone: While the simplified

Table 1. Optimal Parameter Values and Other Properties for the Particle Filter Experiments

Name Description Optimal Value Initial Distribution Truncated Distributiona Parameter Perturbation sdb

�1 Maximum Chl:C ratio in phytoplankton 0.047 U(0.013, 0.094) U(0.040, 0.094) 0.004
�2 Maximum grazing rate of zooplankton 0.650 U(0.150, 1.050) U(0.450, 1.050) 0.045

aUsed in the state-augmentation experiment in section 4.4.
bApplied to �1 and �2 after the particle filter resampling; equal to 1

20 of the range of its initial distributions.
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representation of phytoplankton and zooplankton in the
model indicates that �1 and �2 are major error sources
(which is also evidenced by the their temporal variation,
Figure 1), there are numerous more error sources (e.g.,
other parameters, boundary and initial conditions, or the
model’s spatial and temporal discretization). We can expect
good results from the error subspace approach if the param-
eters that are varied are the major sources of model error
that can induce enough variability into the ensemble to
avoid its degeneration.

3.4. Asynchronous Data Assimilation

[42] Particle filters that assimilate observations sequen-
tially, and one-by-one, are typically very sensitive to outly-
ing observations, which can induce strong, undesired shifts
of the ensemble. To increase the robustness of the particle
filter in the presence of outliers, data can be assimilated
asynchronously, i.e., not individually as each observation
becomes available, but as a set of observations at a later
point in time. Many implementations of asynchronous data
assimilation (ADA) have been developed for sequential
techniques, e.g., for particle filters [Godsill et al., 2004;
van Leeuwen, 2009; Dowd, 2011] and the EnKF [Evensen
and van Leeuwen, 2000; Sakov et al., 2010] and are often
referred to as fixed lag smoothers as they are meant to
smooth the evolution of the ensemble and remove unde-
sired shifts. The general idea is to run the model and collect
several observations before assimilating them into the
model together.

[43] Here, we implemented a simple ADA scheme
mainly because the noise level in our satellite observations
is high and they contain a large number of missing values.
The latter may cause a single image to contain only local-
ized information about part of the domain. Both factors
contribute strongly to the rapid changes of optimal parame-
ter values [Mattern et al., 2012], which are shown in
Figure 1.

[44] Our ADA procedure is as follows: weights are com-
puted at every analysis step but resampling occurs only ev-
ery nADA þ 1 steps. Resampling takes into account the
current and the nADA previous observations by averaging
the last nADA þ 1 weights for each ensemble member. Note
that the model does not need to be stopped and restarted
when no resampling occurs. It is sufficient to store model
output at the time steps corresponding to the available

observations, so that the weights can be computed when a
full assimilation step is performed. The above procedure
represents a simple way to combine nADA þ 1 observatio-
nal time steps into one assimilation step. Outlying observa-
tions still enter the SIR resampling but their effect on the
ensemble is greatly reduced by the averaging process. We
assess the effect of this ADA scheme in section 4.3.

4. Experiments and Results

4.1. Particle Filter and Model Setup

[45] We use the following basic setup for all experi-
ments. Unless noted otherwise, our experiments are particle
filter simulations from 1 January to 31 December, 2006.
After an adjustment phase of 10 days, in which the initial
values of �1 and �2 take effect, the 350 daily satellite obser-
vations are assimilated into the model. The initial condi-
tions for the physical and biological variables were spun up
for 1 year; initial parameters are taken from the distribu-
tions listed in Table 1 (see Table 2 for an overview of all
experiments).

[46] To assess our particle filter results quantitatively, we
compare them to a model simulation with optimized, fixed
parameters. This reference simulation uses the identical
model setup and optimized values for �1 and �2 (taken from
Mattern et al. [2012]) that minimize the average AGB dis-
tance based on all observations that we use for our particle
filter assimilation (including the removal of the estuaries
data, see section 2.3). This means that our reference simu-
lation produces the best chlorophyll output we can expect
from a single deterministic model simulation. Therefore we
consider particle filter simulations with similar perform-
ance to the reference simulation a success.

[47] In the following, we introduce our particle filter
baseline experiment (section 4.2) and further experiments
to assess the individual effects of ADA (section 4.3), state-
augmentation (section 4.4) and the ensemble size (section
4.5). Because the particle filter results are based on parame-
ters that are drawn from a uniform distribution initially and
assigned random noise, we perform several replicate simu-
lations of our experiments, in order to assess their robust-
ness (see Table 2). The replicate simulations are exact
copies of our particle filter experiments, except for the ran-
dom terms. For experiments with replicate simulations, Ta-
ble 3 lists the mean absolute residual and its standard

Table 2. Configuration of the Particle Filter Experiments

Name Section nens S-Aa ADA nADA Trunc. dist.b nrep
c

Reference simulation 4.1 The reference simulation does not use SIR
1 Baseline 4.2 20 � � 4 13
2.1 No ADA 4.3 20 � 3
2.2 Strong ADA 4.3 20 � � 9 5
3.1 No state-augmentation 4.4 20 � 4 1
3.2 Truncated baseline 4.4 20 � � 4 � 1
3.3 Truncated, no S-Aa 4.4 20 � 4 � 1
4.1 nens ¼ 40 4.5 40 � � 4 11
4.1 nens ¼ 10 4.5 10 � � 4 11
4.2 nens ¼ 5 4.5 5 � � 4 11

aState-augmentation.
bSing the truncated distribution.
cUmber of replicate simulations.
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deviation. In the table, we also included the best and the
worst results of the baseline experiment in order to provide
a full account of the performance encountered in the repli-
cate simulations.

4.2. Experiment 1: Baseline Experiment

[48] Our baseline experiment uses ADA (with
nADA ¼ 4), state-augmentation, and an ensemble size of
nens ¼ 20. In order to compare the performance of the
baseline experiment to our reference simulation, we focus
on the average surface chlorophyll content in two subre-
gions of the model domain (Figure 2 and Table 3): The di-
vision into estuaries (not considered here due to high noise
in the observations), shelf and open ocean regions is mainly
motivated by the different levels of surface chlorophyll
present in these regions throughout the year and the associ-
ated differences in the plankton dynamics. The reference
simulation fits the observations best in the months follow-
ing the chlorophyll spring bloom (May, June and July)
when chlorophyll levels stay relatively low and do not fluc-
tuate much. Large discrepancies appear during the bloom
in April in the open ocean region where the model overesti-
mates the surface chlorophyll content, and late in the year
in December when chlorophyll is underestimated. In order
to examine if the particle filter can improve this fit, we
include the mean absolute chlorophyll residual for April
and December in Table 3, along with the mean absolute
residuals for the entire year.

[49] In comparison to the reference simulation, our base-
line particle filter configuration performs, on average,
slightly better in the shelf region and slightly worse in the
open ocean region (Table 3). For a better overview, we
have included the simulations that achieved the worst, the
best and the median results among replicate simulations
(based on absolute residuals in the open ocean region) in
Figures 5 and 6. There are some obvious differences
between individual simulations that use the same configura-
tion: Our median simulation (Figure 5a), for example,
shows a small improvement of fit to the observations in
April. In contrast, the best simulation does a much better
job at predicting the decline of the chlorophyll bloom in
early April, whereas the worst simulation overestimates

chlorophyll in April beyond the high level of the reference
simulation (Figure 5b).

[50] As indicated by the results in Figure 5b, the highest
variation among reference simulations can be found in the
April chlorophyll residuals (Table 3), where most but not
all particle filter simulations can improve upon the refer-
ence simulation and where the best results show a very
strong improvement. All particle filter simulations improve
upon the reference simulation for the December residuals
and the standard deviation among simulations is consider-
ably smaller. In order to examine if the variation of the par-
ticle filter residuals is affected by ADA, we performed a
follow-up experiment in section 4.3.

[51] The parameter development in our baseline experi-
ment (Figures 6a and 6b; for �2 see online appendix)
reveals that the values of the augmented parameters do not
converge to a fixed value but roughly retrace the smoothed
optimal time-dependent values for �1. This means that the
assimilation can capture the time-dependence of �1, the pa-
rameter with the strongest effect on model chlorophyll. For
�2, which has a smaller impact on surface chlorophyll
[Mattern et al., 2012], optimal parameters are retraced
much less closely. The extent to which the chlorophyll esti-
mates benefit from state-augmentation is investigated in
section 4.4.

4.3. Experiment 2: Effect of ADA

[52] In our second experiment, we assessed the effects of
ADA on the particle filter results. For this purpose, we per-
formed several replicate simulations where ADA was deac-
tivated (each observation was assimilated individually) and
simulations where ADA was increased over a larger
smoothing window of size nADA ¼ 9.

[53] The average, year-long absolute residuals and their
variability among the experiments have notably increased
without ADA in the shelf region (Table 3), the particle fil-
ter becomes less robust and the general performance over
the time span of the entire experiment drops. Yet, the aver-
age results in the open ocean region are slightly improved
compared to the baseline experiment, and a stronger
improvement is visible in the April residuals, when the
associated variability is lower too. One possible

Table 3. Absolute Residuals (Mean 6 Standard Deviation) for the Particle Filter Experiments

Name

Average Absolute Residuals (mg chlorophyll m�3)

Shelf Regiona Open Ocean Regiona April, Open Ocean December, Open Ocean

Reference simulation 0.628 0.241 0.579 0.400
Particle filter baseline 0.586 6 0.021 0.251 6 0.015 0.585 6 0.115 0.356 6 0.005
,!Worstb 0.616 0.275 0.775 0.368
,!Bestb 0.551 0.228 0.417 0.349
No ADA 0.671 6 0.101 0.239 6 0.021 0.389 6 0.016 0.361 6 0.006
Strong ADA 0.676 6 0.063 0.299 6 0.021 0.919 6 0.211 0.373 6 0.023
No state-augmentation 0.661 0.260 0.725 0.381
nens ¼ 40 0.567 6 0.010 0.243 6 0.009 0.511 6 0.041 0.359 6 0.003
nens ¼ 10 0.598 6 0.028 0.247 6 0.011 0.525 6 0.086 0.366 6 0.010
nens ¼ 5 0.637 6 0.069 0.263 6 0.025 0.638 6 0.218 0.365 6 0.016
Truncated baseline 0.583 0.243 0.484 0.357
Truncated, no S-Ac 0.803 0.344 1.012 0.345

aSee Figure 5 for a map of the regions.
bThe residuals of the worst and best results of the baseline experiment in each column are taken from different simulations.
cState-augmentation
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explanation for these results can be found in the evolution
of the parameter values (Figure 6c). In instances where
there is a large deviation between the model and the chloro-
phyll observations, the daily assimilation can quickly adjust
model state and parameter values. This can be advanta-
geous in the short term (April) where it can lead to a more
consistent improvement compared to the standard experi-
ment. Yet strong shifts can occur even when the particle fil-
ter estimates are close to the observations, these have a
negative impact on assimilation performance and fre-
quently force the parameter estimates away from the opti-
mal parameter values. For example, a strong shift in �1 in
May (see Figure 6c) causes a long-lasting underestimation
of chlorophyll (Figure 5c). Overall, the negative shifts out-
weigh the positive ones, evidenced by the year-long results
in Table 3.

[54] One additional problem that affects the simulations
without ADA is the low ensemble spread (compare Figure

5c to 5a or 5b) which hinders a quick recovery from shifts
in the ensemble. The low spread is caused by the faster suc-
cession of assimilation steps (daily compared to every 5
days in the baseline experiment) which contract the ensem-
ble more frequently, an effect that can be counteracted by
increasing the parameter noise. Furthermore, the use of
ADA decreases the number of independent observations
that are assimilated. More independent observations, in the
simulations without ADA, can have a negative effect on
particle filter performance, and have been shown to
increase the probability of ensemble collapse [Snyder et al.,
2008; van Leeuwen, 2009].

[55] For nADA ¼ 9, the mean performance degrades
compared to the baseline experiment (Table 3). Here
it appears that the wider gap between assimilation
steps prohibits a quick adjustment of the ensemble,
causing changes in the state due to assimilation to become
sluggish.

Figure 5. The surface chlorophyll development in the open ocean region (see inset ; highlighted in
blue) for selected particle filter experiments in comparison to the observations and the reference simula-
tion with optimized parameters. For the particle filter, both ensemble median and the region between the
0.1 and the 0.9 quantile are shown. The panels correspond to different particle filter experiments. (a) The
particle filter simulation that achieved the median fit to the observations among the replicates of the base-
line experiment (section 4.2) and (b) those with the worst and best fit are displayed. (c) An experiment
without ADA (section 4.3) and (d) an experiment without state-augmentation (section 4.4) are depicted.
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[56] In summary, the ADA has a stabilizing effect on our
particle filter simulations. Without ADA, resampled param-
eter values appear less smooth in time and the particle filter
state estimates degrade due to outliers in the data. In con-
trast, too much smoothing results in a dampened response.
By averaging the weights over five time steps with our
ADA procedure, we were able to reduce the problem posed
by outliers in the observations while still permitting param-
eter values to change in time.

4.4. Experiment 3: Effect of State-Augmentation

[57] In this experiment we examine the effects of state-
augmentation which serves as a way to jointly estimate pa-
rameter and state values with particle filters and provides
the ensemble with a parameter memory: suitable parameter
values are ‘‘remembered’’ by carrying them over from one
assimilation step to the next. Our baseline simulation with
state-augmentation exhibits a clear pattern in the ensemble
of parameter values, retracing the optimal time-dependent
parameter values for �1 (Figure 6a). This indicates that a

memory of suitable parameter values is advantageous and
may be required to obtain agreement with the chlorophyll
observations.

[58] To assess the influence of state-augmentation, we
performed a particle filter simulation with the same config-
uration as the baseline experiment, but deactivated state-
augmentation. Parameter values were no longer resampled
but instead redrawn from a static distribution at the end of
every assimilation step, rendering the parameter distribu-
tion essentially memoryless (illustrated in Figure 6d). In a
first experiment, we used the same uniform distributions
that was used as the initial parameter distribution in the
baseline experiment. To assess the influence of the parame-
ter distribution in particular, we performed an additional
experiment replacing the original distribution with a trun-
cated one (see Table 1).

[59] The ensemble median of our particle filter simula-
tion without state-augmentation remains close to the refer-
ence simulation (Figure 5d) and consequently the
performance of the two simulations are very similar (Table

Figure 6. The development of �1 for the same experiments depicted in Figure 5. The faint red line and
the thick red line correspond to the optimal parameter values obtained in Mattern et al. [2012] (compare
Figure 1). For the particle filter, both ensemble median and the region between the 0.1 and the 0.9 quan-
tile are shown. The light gray area between the dotted horizontal line marks the parameter range, the
optimal fixed parameter value is denoted by the dashed horizontal line (see Table 1).
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3). The resampling of states seems to have little effect on
the evolution of the ensemble when it is combined with a
random assignment of parameter values. In fact, the ensem-
ble median of the average surface chlorophyll concentra-
tion remains consistently above the output of the reference
simulation throughout the simulation (Figure 5d). This bias
is present even when it implies a severe overestimation of
the chlorophyll concentration (see for example the April
result in Figure 5d). In this particle filter configuration, the
resampling cannot effectively correct chlorophyll esti-
mates. Instead, the chlorophyll estimates appear to be
strongly dependent on the static parameter distributions
chosen for the experiment. This parameter distribution is
centered on parameter values close to those used in refer-
ence simulation, explaining the close match between the
simulation without state-augmentation and the reference
simulation.

[60] To further assess the influence of the parameter dis-
tributions, we performed an additional experiment with
modified distributions. Again, we used uniform distribu-
tions but truncated their range by one third on the lower
side (see Table 1). As a result, the optimal parameter values
are no longer close to the mean of their respective distribu-
tions. The use of these new distributions adds a bias to the
chlorophyll estimates and causes a clear decline in the fit to
the observations for the particle filter without state-aug-
mentation (Figure 7). With state-augmentation turned on,
however, the effects of the ill-chosen initial parameter
distribution are barely noticeable, as the resampling
quickly determines the time evolution of parameter values
(Figure 7b).

[61] A closer investigation reveals that the particle filter
implementation without state-augmentation produces, on
average, considerably lower weights during resampling
when compared to particle filter with state-augmentation.
Due to the random assignment of parameter values and the

small ensemble size, none of the particles experiences a
lasting benefit from suitable parameter values. This nega-
tive effect cannot be effectively counteracted by the SIR
resampling.

[62] In summary, it is apparent that the parameter mem-
ory provided by state-augmentation is an important asset in
this application. It allows the particle filter to move the pa-
rameter distributions to suitable regions in parameter space
which are allowed to vary in time. In addition, good results
can be obtained without prior knowledge of suitable param-
eters values, as state-augmentation provides the particle fil-
ter with a means to adjust parameters quickly and break out
of ill-posed initial distributions.

4.5. Experiment 4: Ensemble Size

[63] In our final experiments, we examine the influence
of the ensemble size on our particle filter implementation:
In a typical particle filter application, the ensemble repre-
sents a sample from the probability distribution of the state
variables. In our implementation, where the ensemble oper-
ates in a lower dimensional error subspace, the augmented
part of the ensemble approximates the probability distribu-
tion of the two parameters �1 and �2. Regardless of the
exact dimension of the approximated probability distribu-
tion, it is expected that a larger ensemble and therefore a
higher sample size leads to a better representation and
more accurate results. However, large ensembles are not
practical because they result in a higher computational cost
due to additional model simulations.

[64] In addition to the standard ensemble size of 20, we
tested sizes of 5, 10, and 40. Computational constraints
also force us to keep the number of replicate experiments at
11, a relatively low number which might not eliminate the
influence of outliers on the results. Gradually increasing the
ensemble size from 5 to 40 leads to the expected improve-
ment in average performance (Table 3). It is notable that, in

Figure 7. The development of the (a) surface chlorophyll concentration and (b) �1 for the particle filter
with truncated parameter distributions (compare section 4.4) with and without state-augmentation. In
both panels, the ensemble median and the region between the 0.1 and the 0.9 quantile are shown for both
particle filter experiments. Figure7a also contains the observations and the reference simulation, Fig-
ure7b shows the smoothed optimal values (obtained from Mattern et al. [2012]). The light gray area
between the dotted horizontal line in Figure7b marks the truncated parameter range, the optimal fixed pa-
rameter value is denoted by the dashed horizontal line (see Table 1).
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comparison to the baseline experiment, a decrease in the
ensemble size to 10 yields no strong decline in performance
across the results listed in Table 3 (a further reduction of
the ensemble size to 5, however, causes a larger drop in the
average performance). It may seem surprising that 10 en-
semble members are sufficient to approximate the high-
dimensional distribution of the model state. This is a result
of the two-dimensional error subspace that the particle filter
operates in. Since state-perturbations are only caused by
two parameters, it is sufficient that the ensemble can ap-
proximate the two-dimensional parameter distribution and
its time-evolution to obtain adequate results. An expanded
state-augmentation that incorporates more than two param-
eters will likely profit more from larger ensemble sizes.

[65] Besides average performance, the increase of the en-
semble size also improves the precision of the particle fil-
ter, as indicated by the standard deviations listed in Table
3. The reduction of the standard deviation associated with
increasing the ensemble size from 20 (baseline experiment)
to 40 highlights the importance of large ensembles. With
40 ensemble members, particularly bad particle filter
results (such as the worst replicate of the baseline simula-
tion in Figure 5b) are less likely to occur.

[66] In summary, increasing the ensemble size leads, as
expected, to an increased accuracy and precision of our
particle filter results. While 10 ensemble members are suffi-
cient to achieve good results, larger ensembles markedly
increase the robustness of our particle filter.

5. Discussion and Conclusions

[67] We have implemented a particle filter algorithm for
data assimilation of real daily satellite observations of chlo-
rophyll into a time dependent 3-D biological ocean model
for the purpose of joint state and parameter estimation. Par-
ticle filters offer advantages over other ensemble data
assimilation technique in that it can produce the correct tar-
get distributions for the state and parameters for general
nonlinear models and non-Gaussian errors, a feature which
is not supported by the widely used EnKF [van Leeuwen,
2009].

[68] One of the main problems in using particle filters
for data assimilation and complex models is ensemble col-
lapse and the accompanying low ensemble spread that pre-
vents effective data assimilation. Ensemble collapse is
often caused by an undersampling of the state space
[Snyder et al., 2008]. We have shown in this study that en-
semble collapse can also be caused by outlying observa-
tions which are ubiquitous in biological applications. In
high-dimensional applications, the state space is typically
sparsely populated by a small ensemble relative to the num-
ber of dimensions. As a consequence, one or just a few en-
semble members tend to lay close to the observation (in the
sense of obtaining a high likelihood) and receive high
weights in the particle filter-based assimilation procedure.
This leads to the resampling of the few highly weighted en-
semble members and the collapse of the ensemble. A simi-
lar process can occur due to the presence of outlying
observations. Outliers deviate notably from the rest of the
observations and tend therefore not to lay close to those
regions of the state space where previous observations have
consolidated the ensemble. Again, only the few close en-

semble members receive high weights. As the experiment
in section 4.3 shows, outlying observations can bring an en-
semble close to collapse and can therefore effectively
impede data assimilation.

[69] In this application, we avoid the problem posed by
the high dimensionality of our model by effectively operat-
ing the data assimilation in a lower dimensional error sub-
space. This is achieved by introducing stochasticity into the
ensemble solely by varying a few model parameters that
the model is very sensitive to. Furthermore, the stochastic
parameters are incorporated into the augmented state. The
variation of parameters as a means by which stochastic var-
iation is added to the ensemble, is especially suitable for bi-
ological models [Annan, 2001]. These models contain
parameters with a large range of possible values that are in
practice not very well-known and whose effect on the
model output is great. For this study we chose parameters
that the model chlorophyll is very sensitive to, ensuring
adequate spread in the predictive ensemble with respect to
chlorophyll for most of the simulation. At some points
however, the predictive ensemble does not cover the obser-
vations well and as a consequence the improvement
obtained by the particle filter assimilation remains rela-
tively low (e.g., the surface chlorophyll development in
November and December in the open ocean region in Fig-
ure 5).

[70] It should be noted, however, that other model errors,
especially from physical sources, are not represented and
would have to be considered for a more comprehensive
assessment [Palmer et al., 2005]. We expect that the addi-
tion of more error sources, physical or biological (e.g., in
the form of additional parameters via state-augmentation),
will improve the particle filter state estimates at the cost of
a requirement for larger ensembles. Parameter estimates
could likely worsen, however, as dependencies between the
biological parameters and the additional error sources
become an issue. More work is required to assess the exact
benefits and drawbacks of a higher dimensional error sub-
space and the effect of adding physical error sources on bi-
ological state and parameter estimation. Recently, some
other particle filtering approaches suitable for state estima-
tion for large scale systems have been proposed: van Leeu-
wen [2010] suggests modifying the initial distribution of
the error sources (in this application: �1 and �2) with the
aim of preventing ensemble collapse by using future obser-
vational information, and Chorin and Tu [2009] suggest a
nonlinear particle filter based on implicit sampling that
behaves well for low numbers of particles. Briggs et al.
[2013] suggest using a particle smoother in space along
with the estimation in time. Our use of error subspace pro-
vides an alternative approach, that is useful for both state
and parameter estimation.

[71] To address the detrimental effect of observational
noise and outliers, we made use of ADA in our particle fil-
ter implementation. Without ADA, single anomalous
observations can introduce strong shifts into the ensemble
during assimilation (Figure 6d), an effect which can persist
over multiple assimilation steps and decrease the fit to the
observations significantly. In fact, the particle filter config-
uration without ADA produced some of the worst results
among our particle filter experiments (Table 3). The simple
ADA scheme we introduced in section 3.4 is
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straightforward to implement and essentially averages over
multiple observations before assimilating them into the en-
semble, increasing the robustness of the particle filter. The
second implementation aspect that increases the particle fil-
ter’s robustness is the weighting during resampling. In this
study, we base the particle filter’s weights on transformed
inverse distance values, and introduce a parameter that
allows for suitable spreading of the weights. This approach
is flexible, as it allows the use of various types of observa-
tions along with suitable model-data distance measures.

[72] An effect of using complex numerical models is that
their computational cost precludes the use of large ensem-
ble sizes (even in very high dimensional problems, such as
numerical weather prediction, ensemble sizes are between
5 and 100) [Gneiting and Raftery, 2005]. Ensemble-based
data-assimilation techniques (e.g., particle filters) that are
built on these relatively small samples can show strong
variability in their results from one experiment to the next.
To quantify this variability we ran multiple replicates of
our main experiments (see Table 2 for the number of
replicates for each experiment). Most particle filter experi-
ments stayed close to the reference simulation, yet we
observed some variation, both beneficial and detrimental.
The use of multiple realizations to quantify sampling vari-
ability is a standard tool in statistics [Gelman and Rubin,
1992], and its use is important in assessing the effective-
ness of all data assimilation schemes relying on small
ensembles.

[73] State-augmentation allows for joint state and param-
eter estimation within the particle filter procedure [Dowd,
2011]. In our experiments, the particle filter benefits from
the resampling of parameters, improving chlorophyll esti-
mates and allowing parameters to diverge from ill-posed
initial distributions. For the two biological parameters that
are part of the state-augmentation it is realistic to assume
time-dependence [Mattern et al., 2012]. Parameter esti-
mates obtained via state-augmentation could identify the
low frequency time evolution of �1, the chlorophyll-to-car-
bon ratio in all of our replicate experiments (Figures 6a and
6b). For �2, the less sensitive maximum grazing rate of zoo-
plankton, the estimates are less robust and vary greatly
amongst different particle filter simulations. In our applica-
tion, state-augmentation is more useful in improving state
estimates than in obtaining robust parameter estimates.

[74] Predictive skill is often used to assess the capabil-
ities of a model in combination with a data assimilation
technique, it quantifies how long a model can retain
improvements introduced via assimilation. An assessment
of predictive skill in Hu et al. [2012] for the same model
and the same assimilated observations shows that a local-
ized EnKF can increase the model’s surface chlorophyll
forecast skill for time spans of a few days to a maximum of
25 days–dependent on the magnitude of the improvement
introduced by the EnKF, which differs with the time of
year. Because we use the same model, we would expect
similar results from our particle filter implementation:
Besides a strong dependence of predictive skill on the
improvement introduced by the particle filter (which also
displays a strong time-dependence, see Figure 5), we would
anticipate a positive effect of the state-augmentation, with
seasonal parameter values slowing the decline in the mod-
el’s forecast performance.

[75] In summary, particle filters offer the possibility for
sequential ensemble data assimilation to be applied to com-
plex, high-dimensional ocean models and real observations.
To work successfully, we provided modifications to the
standard particle filter, dealing with problems posed by out-
lying observations and the high-dimensionality of the
model. With these modifications the particle filter
achieves a better model-data fit than an optimized model
simulation.
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