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Significance

 The advent of satellite 
observations of chlorophyll-a 
(Chla) has revolutionized our 
understanding of Earth’s 
distribution of phytoplankton. 
However, it is well recognized 
that satellites cannot detect 
phytoplankton below the ocean’s 
surface and that Chla is an 
imperfect measure of biomass. 
The maturation of autonomous 
robots at sea now allows for 
global, depth-resolved estimates 
of phytoplankton biomass based 
on optical proxy observations. 
From these optical 
measurements, we estimate the 
stock of phytoplankton and 
evaluate their spatiotemporal 
dynamics. The seasonal cycles of 
estimated phytoplankton stocks 
and Chla visible from space show 
large discrepancies in most of the 
ocean. Our study demonstrates 
that profiling robots enable more 
reliable monitoring of Earth’s 
phytoplankton, which is urgently 
needed to understand the impact 
of climate change.
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Marine phytoplankton are fundamental to Earth’s ecology and biogeochemistry. Our 
understanding of the large- scale dynamics of phytoplankton biomass has greatly ben-
efited from, and is largely based on, satellite ocean color observations from which 
chlorophyll- a (Chla), a commonly used proxy for carbon biomass, can be estimated. 
However, ocean color satellites only measure a small portion of the surface ocean, mean-
ing that subsurface phytoplankton biomass is not directly monitored. Chla is also an 
imperfect proxy for carbon biomass because cellular physiology drives large variations 
in their ratio. The global network of Biogeochemical (BGC)- Argo floats now makes it 
possible to complement satellite observations by addressing both these issues at once. In 
our study, we use ~100,000 water- column profiles from BGC- Argo to describe Earth’s 
phytoplankton carbon biomass and its spatiotemporal variability. We estimate the global 
stock of open ocean phytoplankton biomass at ~314 Tg C, half of which is present at 
depths not accessible through satellite detection. We also compare the seasonal cycles 
of carbon biomass stocks and surface Chla visible from space and find that surface Chla 
does not accurately identify the timing of the peak annual biomass in two- thirds of 
the ocean. Our study is a demonstration of global- scale, depth- resolved monitoring of 
Earth’s phytoplankton, which will be crucial for understanding future climate- related 
changes and the effects of geoengineering interventions if implemented.

ocean color | particle backscatter | fluorescence | phenology | bloom

 Assessing global phytoplankton stocks is an important effort in biology. Modeling suggests 
that phytoplankton are responsible for about half of the net primary productivity on 
Earth, rivaling that of the terrestrial biosphere ( 1 ). The sinking of photosynthetically 
produced organic matter into the deep ocean keeps atmospheric CO2  concentrations ~200 
ppm below an otherwise phytoplankton-free ocean ( 2 ).

 Our understanding of the meso- to global-scale distributions of phytoplankton 
biomass is largely based on satellite observations of chlorophyll-a (Chla), which is 
commonly used as a proxy for phytoplankton biomass. These space-based observations 
of Chla have enabled fundamental studies about how the standing stock of phyto-
plankton varies on a range of spatiotemporal scales ( 3           – 9 ). However, there are two 
well-recognized limitations when using satellite-based Chla. For one, satellite meas-
urements are restricted to a surface layer called the first optical depth ( 10 ), meaning 
that the subsurface distributions of phytoplankton are not directly monitored. Second, 
Chla is not an ideal measure of phytoplankton biomass. Rather, the most ecologically 
and biogeochemically relevant metric for determining phytoplankton biomass is the 
mass of organic carbon specific to phytoplankton (Cphy ) ( 11 ,  12 ). Intracellular Chla 
can vary independently of Cphy  because it is greatly influenced by a cell’s physiological 
response to its growing conditions (e.g., temperature, nutrients, and light;  13 ). The 
decline in light with depth, for example, drives phytoplankton to up-regulate Chla 
via photoacclimation. Photoacclimation explains why the subsurface maximum in 
Chla does not share a similar subsurface maximum in Cphy  in large parts of the ocean 
( 11 ,  14     – 17 ).

 Advances in phytoplankton detection have helped tackle these limitations. In the seminal 
paper by Behrenfeld et al. ( 18 ), satellite-based estimates of Cphy  were determined from particle 
backscattering (bbp ), a bio-optical property known to correlate with Cphy  ( 19 ,  20 ). Systematic 
subsurface monitoring of phytoplankton dynamics has been enabled by Biogeochemical-Argo 
(BGC-Argo) floats, a type of underwater profiling robot, that enables estimates of Cphy  (from 
bbp ) and Chla (from fluorescence) throughout the euphotic zone and below. Various regional 
studies have utilized these measurements to describe water-column stocks of Cphy  and Chla 
( 21         – 26 ). Occasionally these studies highlight how the physiological variability in the Chla:Cphy  
ratio can greatly complicate the interpretation of spatiotemporal trends in phytoplankton 
biomass when Chla is used as a proxy ( 22 ,  26 ). For example, Vives et al. ( 26 ) showed how 
the onset of the spring bloom in the Southern Ocean (below 50°S) occurs several weeks after 
Chla begins to increase; a discrepancy that has consequences for bloom studies relying on 
Chla as a proxy for Cphy .D
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 The maturation of the BGC-Argo program has produced a sub-
stantial database of depth-resolved bbp  and Chla fluorescence (FChla ) 
measurements ( 27 ), allowing for depth-resolved phytoplankton 
biomass dynamics to be estimated on the global scale. In this study, 
we aim to: 1) quantify Earth’s stock of phytoplankton Cphy  and Chla, 
2) identify their spatiotemporal dynamics, and 3) test how well sur-
face Chla serves as a proxy for depth-integrated Cphy  (ΣCphy ).

 After quality control, we obtained 99,341 bio-optical profiles from 
903 BGC-Argo floats deployed in the last decade ( Fig. 1 ; details in 
the Methods  and SI Appendix, Fig. S1 ). The main analysis is based 
on binning these profiles for every 10° latitudinal band for each of 
the three main ocean basins (i.e., the Atlantic, Pacific, and Indian 
Oceans) excluding areas where the seabed is shallower than 500 m. 
In each of these regions, we developed a weekly climatology of Chla 
and Cphy . Profiles of FChla  were adjusted using an empirical-relationship 
between Chla and the diffuse attenuation coefficient (Kd ) ( 28 ). This 
adjustment is based on the annual mean of Kd  within the 1% light 
level in each region (SI Appendix, Fig. S2 ). Cphy  was estimated using 
a linear model based on direct measurements of Cphy  and bbp  at 470 
nm [Methods ; ( 20 )]. Most floats measure bbp  at 700 nm, so we con-
verted bbp  to 470 nm by assuming a spectral slope of 0.73 ( 29 ). To 
isolate the phytoplankton-specific bbp  signal and ensure Cphy  always 
asymptotes to 0 mg m−3  with depth, we applied a process that effec-
tively subtracts deep values of bbp  as an in situ “blank” (Methods  and 
 SI Appendix, Fig. S3 ). This correction assumes that bbp  from nonalgal 
particles (NAP) is essentially constant within the euphotic zone and 
is reasonably consistent with picophytoplankton Cphy  estimated from 
cell abundance (SI Appendix, Comparison with Abundance-based 
Estimates  and Fig. S4 ). Weekly averages of depth-resolved Cphy  and 
Chla were calculated for each region. From these climatologies, ver-
tically integrated (in mg m−2 ) and zonally integrated stocks (in Tg) 
were determined. Surface Chla was calculated as the averaged 
mixed-layer concentration. Globally integrated stocks of Cphy  (Tg) 
and Chla (Tg) are obtained as the sum of all regional stocks, while 
globally averaged seasonal cycles are weighted by the area of each 10° 
latitudinal region. To compare ΣCphy  or surface Chla, various bloom 
metrics are determined (e.g., the timing of the peak), where ΣCphy  
is used as the standard metric for evaluating surface Chla as its proxy.         

Results and Discussion

Global and Regional Stocks. We arrive at a global standing stock 
of ~314 Tg Cphy and ~11.4 Tg Chla (Fig. 2). The mean absolute 
percentage error (MAPE) multiplied by these stocks, leaves a range 

in uncertainty of 213 to 414 Tg Cphy and 7.8 to 15.0 Tg Chla 
(Methods). The average area- normalized stocks of open ocean 
ΣCphy and ΣChla are 965 (655 to 1,273) mg m−2 and 35.2 (23.9 
to 46.3) mg m−2, respectively. The majority of the Cphy and Chla 
stocks are both present in the southern hemisphere (67% and 
60%, respectively). Around 43% of Cphy and 35% of Chla stock is 
located south of 30°S, which includes the Southern Ocean and its 
subtropical boundaries: a region that represents ~32% of the open 
ocean’s surface area (Fig. 2A). As for the major ocean basins, the 
relative distribution of Cphy and Chla stocks corresponds well with 
their surface area. The Pacific Ocean holds ~49% of the global 
stocks, while the Indian and Atlantic Oceans hold ~25% and 
26%, respectively. If we assume that ~9% of the phytoplankton 
are in coastal areas (based on surface area alone), the global stocks 
are approximately 343 Tg Cphy and 12.5 Tg Chla, respectively.

 Our estimates of Cphy  and Chla likely involve biases due to the 
conversion factors we assumed constant. Our global estimates are 
sensitive to these assumptions, although they are robust to an 
alternative spatial grouping based on BGC provinces (SI Appendix, 
Alternative Calculations of Global Stocks ). Variability in the rela-
tionship between Cphy  and bbp  is the main source of uncertainty 
in Cphy , and is driven by community composition, physiology, 
and the concentration of NAP relative to Cphy  ( 30         – 35 ). For Chla, 
similar uncertainties introduced by the influence of colored dis-
solved organic matter, NAP, and pigment composition and pack-
aging ( 36 ) affect the adjustment made to FChla  when relying on a 
single global relationship.

 Our estimate of global phytoplankton biomass is near the lower 
end of previous estimates, which range from 250 and 2,400 Tg ( 37 , 
 38 ). Unlike previous approaches, our estimate is based on depth- 
resolved, carbon-centric measurements from the entire euphotic zone. 
Previous estimates were based on either satellite-observed ocean color 
or cell abundance from measurements taken from water samples. 
Satellite-based estimates of global phytoplankton biomass rely on 
assumptions about the vertical structure of Chla and/or Cphy . For 
example, Antoine et al. ( 39 ) put global Cphy  at 860 Tg assuming a 
global Cphy :Chla ratio of 100 g Cphy  g Chla−1 , which is more than 
double our estimate even though their global Chla stock of 8.6 Tg is 
about two thirds of ours (12.5 Tg). Falkowski and Raven ( 37 ) esti-
mated global Cphy  between 250 to 650 Tg (assuming a Chla:Cphy  ratio 
between 40 and 100 g Chla−1  g Cphy 

−1 ). Behrenfeld and Falkowski 
( 40 ) made similar estimations of 300 to 750 Tg. The abundance-based 
estimates rely on relatively sparse, in situ observations and must make 
assumptions about cellular carbon concentrations. Abundance-based 

Fig. 1.   (A) Global map of 99,341 quality- controlled, bio- optical profiles from BGC- Argo floats measuring phytoplankton Chla and Cphy (black points); and (B) the 
number of profiles obtained in every 10° latitude band for the Pacific, Atlantic, and Indian Ocean basins (colored regions). These profiles are used to calculate 
climatologies (e.g., surface Chla or ΣCphy).D
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estimates from Buitenhuis et al. ( 38 ) put global Cphy  between 500 and 
2,400 Tg. Relying on previous estimates, a global census for all oceanic 
life on Earth ( 41 ) provides a best estimate of ~600 Tg Cphy .

 The latitudinal distribution of open ocean ΣCphy  shows a qual-
itatively different pattern compared to that of ΣChla and Chla 
at the surface ( Fig. 2 ). We do not observe any substantial differ-
ences in ΣCphy  between the subtropical gyres and the equatorial 
upwelling zones, in contrast to ΣChla or surface Chla, which 
both show moderate increases at the equator (SI Appendix, 
Fig. S5 ). However, this difference is likely driven in part by biases 
in the conversion factors, which result in overestimates of Cphy  
in subtropical gyres and underestimates of Cphy  in the Southern 
Ocean ( 33 ).

 To understand how much phytoplankton are in the subsurface 
ocean and “out-of-view” of satellites, Chla and Cphy  were vertically 
partitioned using the surface mixed layer depth and the first optical 
depth of photosynthetically active radiation (PAR) (Methods ). 
Assuming a well-mixed surface, approximately half of the global 
Cphy  and Chla stocks (47% and 54%, respectively) are in the surface 
mixed-layer and half below. An even greater portion is below the 
first optical depth of PAR, equal to 85% of Cphy  and 88% of Chla, 
respectively. The larger portion of Chla present in the subsurface 
ocean, relative to Cphy , is owed to the photoacclimation response 
to declining light with depth. With either depth horizon, large 
portions of Earth’s phytoplankton are not directly accessible 
through satellite ocean color. The climatological depth of maxi-
mum Chla is also offset by more than 10 m from the depth of 
maximum Cphy  in ~84% of the open ocean (by surface area). 
Below 300 m, extremely small portions of global Cphy  (0.4%) and 
Chla (0.9%) stock are present, which is consistent with expecta-
tions ( 30 ).  

Carbon and Chla Phenology. Phytoplankton blooms, commonly 
used for assessing biomass phenology in ecology, are defined as 
periods of high phytoplankton biomass (42). Using both ΣCphy 

and surface Chla, we calculated various bloom metrics along a 
latitudinal gradient to test how well surface Chla can be used as a 
proxy for ΣCphy (Fig. 3). Metrics are described quantitatively based 
on the data points presented in (Fig. 3). Qualitative descriptions 
are based on patterns shown by generalized additive models fit to 
the latitudinal data.

 The first metric of interest is the timing of the bloom peak and 
is defined as the week when ΣCphy  reaches its annual maximum. 
For the global ocean, we found that the average timing of the 
bloom peak, weighted by surface area, is ~7 wk after surface Chla 
has reached its annual maximum ( Fig. 3C  ). In the tropics (<30° 
latitude), this difference increases to ~12 wk on average. In about 
63% of the ocean, the timing of the peak phytoplankton bloom 
differs by more than 4 wk to when surface Chla reaches its annual 
peak. The area where this discrepancy occurs, mainly equatorial 
and temperate latitudes, contains about half of global phytoplank-
ton biomass (52%). The presence of other components (e.g., slow 
sinking detrital matter, heterotrophic bacteria) could influence 
these results despite our correction for NAP. Assuming such uncer-
tainties are negligible, this result suggests that bloom peaks are 
misidentified by surface Chla for half of Earth’s phytoplankton. 
In polar oceans (>50° latitude), surface Chla and ΣCphy  peaks tend 
to be in better synchrony (SI Appendix, Fig. S6 ).

 Other aspects of the seasonal cycle in phytoplankton substan-
tially differ from that of surface Chla as well. The blooming period, 
defined as the number of weeks where the rate of change in ΣCphy  
is greater than 0 d−1  ( 42 ), ranges from approximately 19 to 26 wk 
and shows no clear pattern with latitude ( Fig. 3D  ). If surface Chla 
is used in place of ΣCphy  to determine this metric, the latitudinal 
pattern in the blooming period is substantially different. On aver-
age, the blooming period based on surface Chla appears ~3 wk 
longer and ranges from 22 to 31 wk. The blooming period based 
on surface Chla is even higher at latitudes around the subtropical 
gyres. For example, blooming appears to last ~12 wk longer based 
on surface Chla than ΣCphy  in the region 20 to 30°N. In the Southern 
Ocean (south of 50°S), blooming periods from ΣCphy  become 

Fig. 2.   (A and B) Latitudinal distributions of Chla and Cphy stock; and (C and D) vertical distributions of Chla and Cphy stocks per 5 m depth. The average mixed 
layer depth (solid black line) and first optical depth (dashed black line), weighted by the area of each ocean basin in each latitudinal band, are shown in panels C 
and D. Note that stocks are integrated from 0 to 500 m, although stocks below 300 m depth are either extremely low or equal to zero (main text). Coastal areas 
shallower 500 m are excluded from the calculation.
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increasingly shorter with higher latitudes, which is opposite to 
what surface Chla suggests. This result agrees with Vives et al. ( 22 ); 
cf, their  Fig. 2 , who showed that Chla increases before phytoplank-
ton Cphy  but has similar annual peaks in the Southern Ocean (south 
of 50°S). This trend also is apparent in the Northern Hemisphere 
in regions north of 50°N ( Fig. 3D  ).

 The bloom amplitude, or the range in ΣCphy  normalized to its 
annual average, describes the seasonal variability in phytoplankton 
at each latitude ( 43 ). The bloom amplitude in ΣCphy  follows a 
parabolic pattern with amplitudes increasing toward the poles. 
The same metric calculated with surface Chla results in regional 
maxima around the subtropical oligotrophic gyres and polar 
oceans ( Fig. 3E  ) that are not seen in its ΣCphy  counterpart. On 
average, the bloom amplitude based on surface Chla is twice as 
large as the one based on ΣCphy , suggesting that blooms are far 
less pronounced than surface Chla suggests.

 Other phenological metrics show differences in the cycles of 
surface Chla and ΣCphy  too (SI Appendix, Fig. S7 ). These discrep-
ancies are well exemplified by the fact that the Pearson correlation 
coefficient between surface Chla and ΣCphy  is less than 0.5 in 
~58% of the ocean and less than 0 for ~35% of the ocean (by 
surface area; SI Appendix, Fig. S6 ). Some of these discrepancies 
could partly be due to factors not directly influenced by phyto-
plankton biomass or Chla. Overall, these metrics indicate that 
phytoplankton blooms are shorter, less intense, and peak later in 
the year compared to what Chla concentrations at the surface 
suggest.

 We also compared our float-based climatology of surface Chla 
with that detected by satellites over a similar period. Although 
individual profiles were not matched up with satellite-based values, 
the seasonal cycle in surface Chla correlates well with that of 

satellite estimates of Chla (SI Appendix, Fig. S6 ). This is also sup-
ported by the fact that the bloom metrics calculated from satellite 
surface Chla share the same trends as those calculated from surface 
Chla from floats (SI Appendix, Fig. S8 ). This comparison implies 
that the climatological patterns described here are representative 
of global-scale phytoplankton dynamics.   

Conclusion

 Based on our estimate, oceanic phytoplankton account for only 
~0.06% of the biomass of the biosphere ( 44 )—a miniscule frac-
tion despite their tremendous role in sustaining marine ecosystems 
and mediating Earth’s carbon cycling. Accurate monitoring of this 
important group of organisms is necessary given current and 
 projected increases in ocean temperatures ( 45 ), deoxygenation 
( 46 ,  47 ), and acidification ( 48 ). This monitoring will require 
carbon-centric, depth-resolved measurements to account for sub-
surface phytoplankton as surface Chla does not account for sub-
surface patterns and is strongly affected by cell physiology ( 42 ).

 We have shown here how global phytoplankton biomass and its 
spatiotemporal variability can be better understood from BGC-Argo 
observations of the subsurface ocean. Using this network of robotic 
profilers, we provided a first-order estimate for the global stock of 
phytoplankton carbon biomass as ~314 Tg. The uncertainties asso-
ciated with our estimate, not all of which are easily quantified, 
demonstrate the need for more direct observations of Cphy  ( 49 ) and 
to better understand its relationship to bbp .

 We also highlight how the seasonal cycles of surface Chla do 
not provide an accurate picture of phytoplankton biomass for 
most of the ocean. This mismatch has implications for linking a 
Chla-based bloom phenology to the production and survival of 
higher trophic levels (e.g., zooplankton, larval fish), and for iden-
tifying a decoupling in predator–prey cycles due to climate change. 
Even though Chla is not a reliable proxy for determining biomass, 
it provides valuable information about the type and physiological 
state of phytoplankton present, especially when coupled with its 
long history of observation.

 Since our analysis is based on climatological averages, real-time 
tracking of depth-resolved phytoplankton biomass on global scales 
will require more advanced methods—namely by combining the 
complementary observations from both satellite and float tech-
nologies. Satellites provide information across the ocean’s surface, 
while floats provide information beneath it. By taking advantage 
of the synoptic global coverage of satellites combined with the 
vertical information from floats, gaps in float coverage could be 
filled using techniques like machine learning ( 50 ). Floats also 
collect data during times when observations from satellite ocean 
color cannot be made (e.g., at night, during polar winter, or under 
clouds). The combination of the two technologies will be an 
important step for the long-term monitoring of Earth’s phyto-
plankton, and for understanding how they will be affected by 
anthropogenic climate change and potential geoengineering projects 
if implemented.  

Methods

Bio- Optical Data from BGC- Argo Floats. Water- column profiles of FChla and bbp 
from BGC- Argo floats were obtained from multiple publicly available databases 
(51–55) and quality- controlled following established procedures [SI Appendix for 
more details, and SI Appendix, Table S1; (56–61)]. In brief, we checked FChla and 
bbp profiles for unrealistic values, excessive measurement noise, inaccurate cali-
bration offsets, and significant gaps in the vertical profiles. Parking hook effects on 
bbp profiles were also removed. Profiles of FChla were corrected using a dark offset. 
The effects of nonphotochemical quenching in daytime profiles were corrected by 

Fig. 3.   (A and B) Seasonal cycles in phytoplankton ΣCphy and surface Chla (as 
z- scores) from BGC- Argo floats. (C–E) Phenological metrics derived from the 
seasonal ΣCphy and surface Chla: (C) the timing of the peak ΣCphy and surface 
Chla, defined as the week from the summer solstice (midsummer); (D) the 
blooming period, defined as the number of weeks with a rate of change >0 d−1; 
and (E) bloom amplitude, defined as the annual range normalized to the mean.
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extrapolating the maximum mixed- layer value to the surface (52). The depth of 
the mixed layer was calculated by using a density threshold of 0.03 kg m−3 and a 
reference of 15 m (unless ice was potentially above; SI Appendix). Both bio- optical 
profiles were smoothed using median and mean filters. Alongside temperature 
and salinity, bio- optical data were binned and averaged to a 5- m resolution. 
Any missing data were interpolated with the smoothed, quality- controlled data 
points. If any near- surface data were missing, the shallowest mixed layer value 
was extrapolated upward. We only retained profiles where both FChla and bbp 
data had passed quality control. We also visually inspected each float’s history 
of profiles as a final step in quality control (SI Appendix, Table S1).

Calculation of Carbon and Chla Climatology. Using the weekly geometric 
mean profiles of FChla and bbp, Chla and Cphy were subsequently estimated from 
their bio- optical proxies as follows. To determine Cphy, bbp (m−1) was partitioned into 
phytoplankton (bbp,phy; m

−1) and NAP (bbp,NAP; m−1) components, such that:

bbp = bbp,phy + bbp,NAP,

Often, Cphy is calculated by assuming a constant bbp,NAP (e.g., refs. 18 and 19), how-
ever, bbp,NAP likely varies with depth, season, and region (34). If bbp,NAP variability 
is not considered, the conversion of bbp to Cphy can lead to erroneous results (e.g., 
negative Cphy concentrations or overestimates of Cphy at depth).

To account for the spatiotemporal variability of bbp,NAP, we calculated bbp,NAP as 
a “background” value of bbp for each weekly mean profile. Our approach aims to 
isolate the bbp signal specific to phytoplankton, ensure that Cphy asymptotes to 0 mg 
m−3, and eliminate any influence from intermediate particle layers. This approach 
builds on the offset correction from Arteaga et al. (23), who offset Cphy with reference 
values between 900 and 2,000 m depth. We calculated bbp,NAP by utilizing all values 
of bbp at depth (SI Appendix, Fig. S3). We first restricted measurements of bbp to the 
deeper portion of the profile, where FChla concentrations are close to zero and bbp 
is assumed to be dominated by NAP. To determine bbp,NAP, we restricted the profile 
to bbp values less than the profile’s median bbp and then applied a 1% quantile 
regression to the profile of this separated bbp. Using this trend line, we defined a 
depth horizon equal to the shallowest depth where the bbp profile intersects with 
the line. Below this depth horizon, bbp,NAP is set equal to bbp, where bbp is expected 
to be largely NAP- dominated. Above this depth horizon, bbp,NAP is set equal to bbp at 
the point where the trend line intersects with the profile (i.e., the background value 
is extrapolated toward the surface). The resulting profile of bbp,NAP is then used to 
estimate bbp,phyto by subtraction. This first approximation of bbp,NAP, while imperfect, 
helps isolate the signal specific to phytoplankton (SI Appendix, Comparison with 
Abundance- based Estimates).

Phytoplankton Cphy (as mg m−3) is calculated as the product of bbp,phy and a 
slope factor derived from direct estimates of Cphy correlated with bbp at 470 nm 
(20, 49). Assuming a spectral slope of 0.73 to convert bbp at 700 nm to bbp at 
470 nm (29):

Cphy = 12, 128 × bbp,phy.

The slope factor from the work of Graff et al. (20) was based on bbp (from both NAP 
and phytoplankton components). This differs from our approach, which partitions 
bbp into NAP and phytoplankton components prior to applying the slope factor, 
which, alongside community- driven variability (33), could affect the statistical 
relationship between Cphy and bbp. We assume that the Cphy:bbp ratio is constant 
in our analysis.

Profiles of FChla based on the manufacturer’s calibrations result in biases in the 
in situ determinations of Chla. We corrected for these biases using radiometric 
determinations of Chla similar to the procedure of Xing et al. (56) and Roesler et al. 
(58). This procedure involves using the diffuse attenuation coefficient (Kd; m−1) 
of irradiance at 490 nm (Ed,490; W m−2 nm−1) to estimate Chla concentrations 
from an empirical relationship developed by Morel et  al. (28). A slope factor, 
equal to the ratio of FChla and radiometric estimates of Chla, is then applied to 
correct for biases in FChla.

Before applying this correction, we quality- controlled Ed,490 data similar to 
established procedures (62). First, Ed,490 data outside of the range of −0.001 
and 3.4 W m−2 nm−1 were discarded. If the profile still contained at least five 
data points, the sun’s elevation was calculated. If the sun’s elevation was less 
than 2°, the profile was not used because it was too dark to determine Kd. If the 
sun’s elevation was greater than 2°, a dark value was determined and subtracted 

from the irradiance profile following Organelli et al. (62). All irradiance values 
equal to or less than 0 W m−2 nm−1 or from below this layer were labeled “bad”; 
otherwise, the remaining data were tentatively labeled “good.” If more than five 
good data points were present, we fit a fourth- order polynomial to the irradiance 
profile of available good data points to identify variability from wave focusing 
and intermittent cloud cover. From this fit, data with residuals greater than two 
SD from the mean were labeled as bad. If this polynomial fit had an R2 greater 
than 0.995 and contained at least five good data points after this residual test, 
a second fourth- order polynomial fit was applied to identify weaker effects from 
wave focusing and clouds. The same procedure for identifying bad data was 
applied. If the fit of the second fourth- order polynomial fit was greater than 
0.996, contained at least five good data points, and reached the 10 to 15 m depth 
bin, then a final fourth- order polynomial fit was applied and used to interpolate 
any missing values. From this quality- controlled profile, Kd within the 1% light 
level was calculated with a least- squares linear regression. The surface reference 
was estimated by extrapolating the polynomial fit to 0 m. Regressions with an 
R2 of less than 0.9, a Kd less than that of pure water (= 0.01660 m−1) or greater 
than 0.5 m−1 [the limit suggested by Morel et al., (28)] were discarded. Using a 
similar procedure with the associated PAR data, we calculated Kd for PAR in the 
1% light level (using only fits with a R2 > 0.9; n = 24,811 profiles) and the first 
optical depth of PAR, equal to 1/Kd of PAR. Then, Chla (in mg m−3) from Kd at  
490 nm was calculated from the equation from Morel et al. (28):

Chla =

(
Kd−0.01660

0.077298

)1∕0.67155

.

Slope factors less than 0 and greater than 30 were discarded. From the orig-
inal 39,982 profiles of Ed,490, a total of 23,694 slope factors were obtained 
(SI Appendix, Fig. S2). The arithmetic mean of all these slope factors equals ~1.8, 
which is lower but close to Roesler et al.’s mean value using a smaller sample size 
of float profiles (58). Slope factors in the Southern Ocean also have similar values 
to those by Schallenberg et al. (63). Since individual calibrations for each profile 
are not possible (not all BGC- Argo floats have both radiometers and fluorometers), 
we instead calculated the annual geometric mean slope factor from all available 
monthly geometric means for each region in the analysis. In other words, a single 
regional slope factor was applied to the weekly climatologies of FChla to achieve 
more accurate estimates of Chla.

Overall, this process yielded weekly depth profiles Chla and Cphy for every 10° 
latitude band for the Atlantic, Pacific, and Indian Ocean basins. This weekly 
climatology and the associated mixed- layer depth were then concatenated three 
times, interpolated for any data that were missing, and then smoothed along the 
temporal axis with a nine- point rolling median followed by a nine- point rolling 
mean. The center of the smoothed series is used in this analysis. If data were 
missing in a latitudinal band, data from the nearest region were extrapolated 
(these extrapolated data represent <1% of the ocean’s surface area and include 
60−70°N in the Pacific Ocean, 80−90°N in the Atlantic Ocean, and 70−80°S in 
the Indian Ocean; SI Appendix, Fig. S1). From these regions, we calculated the 
global- scale seasonal cycle for every 10° latitude band as the weekly, geomet-
ric mean weighted by surface area. The annual stocks (as represented in Fig. 2) 
are calculated as the geometric mean of the global- scale seasonal cycles. The 
geometric mean was used because it estimates the median value when the data 
is log- normally distributed. We also wanted to avoid noise associated with out-
liers, especially in data- poor regions (stocks based on the arithmetic mean are 
reported in SI Appendix).

Uncertainty in Carbon and Chla. We quantified the error in both our Cphy and 
Chla estimates from floats. For this, we considered only the uncertainty in the 
conversion of the bio- optical parameter to biological mass and assumed that 
errors due to sensor drift, temperature, biofouling, and model sensor calibrations 
are negligible. We calculated the MAPE as:

MAPE =
1

N

N−1∑

i=0

||yi− ŷi
||

||yi
||

× 100% ,

where yi is the actual value of Cphy or Chla, and ŷi  is the predicted value of Cphy 
or Chla. The uncertainty in converting bbp to Cphy was determined from a linear 
least- squares regression applied to the data digitized from Graff et al.’s Fig. 2 D
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(20). We found the same slope and y- intercept of the regression reported by the 
authors. We used this equation to calculate a MAPE of ~32% for Cphy. The MAPE 
for Chla depends on the region (SI Appendix, Fig. S2) but the final error in the 
global stock of Chla comes to ~31%.

Satellite Chla Climatology. To compare with float observations of surface 
Chla and ΣCphy, we created weekly climatologies of satellite- based surface 
Chla using level- 3 data from the Moderate Resolution Imaging Spectrometer 
(MODIS) Aqua satellite. We obtained 8- d surface Chla data with a 9- km spa-
tial resolution for the period of January 1, 2012, to December 31, 2023. This 
date range approximately covers the period when most of the float data was 
collected. All satellite values were used in the calculation of Chla climatologies 
(as opposed to matching up satellite measurements with profiles). For each 
8- d image, we calculated the average Chla concentration for every 10° latitude 
and only retained averages that had more than 70% of pixels available. These 
averages were used to calculate a mean weekly climatology for each latitude 
band and to compare with float observations. Similar to the float climatol-
ogy, satellite Chla was concatenated three times and smoothed with a three- 
point rolling median followed by a three- point rolling mean, using the center  
52 wk of data for analysis.

Bloom Metrics. We characterized the annual cycle of phytoplankton with three 
phenological metrics: 1) the timing of the bloom peak, 2) the blooming period, 
and 3) the bloom amplitude. These metrics were calculated using ΣCphy and 
surface Chla. Prior to calculating these metrics, the global- scale, weekly time- 
series of ΣCphy and surface Chla were smoothed with a six- point rolling median, 
followed by a six- point rolling mean. This additional smoothing was performed 
to limit noise associated with averaging the basin- specific climatologies and for 
calculating the accumulation rate. The timing of the peak bloom is defined as 
the week when ΣCphy or surface Chla reaches its annual maximum. The blooming 
period was defined as the total number of weeks where the accumulation rate 
of ΣCphy or surface Chla is greater than 0 d−1 [based on Behrenfeld and Boss’s 
definition of “blooming,” (42)]. To limit outliers, we applied a three- point rolling 
mean to smooth the latitudinal variation in the blooming period. To give a sense 
of the relative variation in each region’s seasonal cycle, the bloom amplitude was 
defined as the maximum in ΣCphy or Chla minus the minimum and divided by 

the annual mean (43). The same metrics were also calculated for satellite Chla 
to compare with surface Chla detected by floats. Pearson correlation coefficients 
were determined using surface Chla vs. ΣCphy and surface Chla vs. satellite Chla 
(SI Appendix, Fig. S6), all of which were log- transformed prior to determining 
the correlation coefficient. For satellite observations, the correlation coefficient, 
bloom amplitude, and bloom duration were only calculated when satellite data 
was available for at least 47 wk of the year. Additional metrics describing the 
seasonal cycle, such as the timing of the minimum accumulation rate, are also 
reported in SI Appendix, Fig. S7.

Data, Materials, and Software Availability. All code and processed data from 
this analysis are available on Zenodo (DOI: 10.5281/zenodo.10949682) (64). 
Previously published data were used for this work. All data used in the article are 
publicly available and referred to in the Methods and SI Appendix (51–55, 65).
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